SY89844U

Precision LVDS Runt Pulse Eliminator 2:1 MUX with 1:2 Fanout and Internal Termination

General Description

The SY89844U is a low jitter LVDS, 2:1 input multiplexer (MUX) optimized for redundant source switchover applications. Unlike standard multiplexers, the SY89844U unique 2:1 Runt Pulse Eliminator (RPE) MUX prevents any short cycles or "runt" pulses during switchover. In addition, a unique Fail-Safe Input protection prevents metastable conditions when the selected input clock fails to a DC voltage (voltage between the pins of the differential input drops below 100 mV).
The differential input includes Micrel's unique, 3-pin input termination architecture that allows customers to interface to any differential signal (AC- or DCcoupled) as small as $100 \mathrm{mV}\left(200 \mathrm{mV}_{\mathrm{pp}}\right)$ without any level shifting or termination resistor networks in the signal path. The outputs are 325 mV LVDS with fast rise/fall times guaranteed to be less than 150ps.
The SY89844U operates from a $2.5 \mathrm{~V} \pm 5 \%$ supply and is guaranteed over the full industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The SY89844U is part of Micrel's high-speed, Precision Edge ${ }^{\circledR}$ product line.
All support documentation can be found on Micrel's web site at: www.micrel.com.

Features

- Selects between two sources, and provides a glitch-free, stable LVDS output
- Guaranteed AC performance over temperature and supply voltage:
- wide operating frequency: 1 kHz to $>1.5 \mathrm{GHz}$
- <870ps In-to-Out tpd
- <150ps $\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$
- Unique patent-pending input isolation design minimizes crosstalk
- Fail-Safe Input prevents oscillations
- Ultra-low jitter design:
- $<1 \mathrm{ps}_{\mathrm{RMS}}$ random jitter
- $<1 \mathrm{ps}_{\mathrm{RMS}}$ cycle-to-cycle jitter
- <10ps ${ }_{\text {pp }}$ total jitter (clock)
- <0.7ps RMS MUX crosstalk induced jitter
- Unique patent-pending input termination and VT pin accepts DC- and AC-coupled inputs (CML, PECL, LVDS)
- 325 mV LVDS output swing
- $2.5 \mathrm{~V} \pm 5 \%$ power supply
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range
- Available in 24-pin ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) QFN package

Applications

- Redundant clock switchover
- Fail-safe clock protection

Markets

- LAN/WAN
- Enterprise servers
- ATE
- Test and measurement

United States Patent No. RE44,134
Precision Edge is a registered trademark of Micrel, Inc.

Typical Application

Simplified Example Illustrating Runt Pulse Eliminator (RPE) when Primary Clock Fails

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89844UMG	QFN-24	Industrial	$844 U$ with Pb-Free bar-line Indicator	NiPdAu Pb-Free
SY89844UMGTR ${ }^{(2)}$	QFN-24	Industrial	$844 U$ with Pb-Free bar-line Indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{DC}$ Electricals Only.
2. Tape and Reel.

Pin Configuration

24-Pin QFN

Pin Description

Pin Number	Pin Name	Pin Function
$\begin{gathered} 5,2 \\ 23,20 \end{gathered}$	INO, /INO, IN1, /IN1	Differential Inputs: These input pairs are the differential signal inputs to the device. These inputs accept AC- or DC-coupled signals as small as 100 mV (200 mVpp). Each pin of a pair internally terminates to a VT pin through 50Ω. Please refer to the "Input Interface Applications" section for more details.
3, 21	VREF-AC0 VREF-AC1	Reference Voltage: These outputs bias to $\mathrm{V}_{\mathrm{cc}}-1.2 \mathrm{~V}$. They are used for AC coupling inputs IN and /IN. Connect VREF-AC directly to the corresponding VT pin. Bypass with $0.01 \mu \mathrm{~F}$ low ESR capacitor to VCC. Maximum sink/source current is $\pm 1.5 \mathrm{~mA}$. Due to the limited drive capability, the VREF-AC pin is only intended to drive its respective VT pin. Please refer to the "Input Interface Applications" section for more details.
4, 22	VT0, VT1	Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. The VT0 and VT1 pins provide a center-tap to a termination network for maximum interface flexibility. Please refer to the "Input Interface Applications" section for more details.
$\begin{aligned} & 1,6,9,10 \\ & 13,19,24 \end{aligned}$	VCC	Positive Power Supply: Bypass with $0.1 \mu \mathrm{~F} / / 0.01 \mu \mathrm{~F}$ low ESR capacitors as close to the VCC pins as possible.
$\begin{gathered} 7,8 \\ 11,12 \end{gathered}$	$\begin{aligned} & \text { Q0, /Q0 } \\ & \text { Q1, /Q1 } \end{aligned}$	Differential Outputs: These LVDS differential output pairs are a logic function of the INO, IN1, and SEL inputs. Please refer to the "Truth Table" section below for details.
15	SEL	This single-ended TTL/CMOS-compatible input selects the inputs to the multiplexer. Note that this input is internally connected to a $25 \mathrm{k} \Omega$ pull-up resistor and will default to logic HIGH state if left open.
14, 17, 18	GND Exposed Pad	Ground: Ground and exposed pad must be connected to the same ground plane.
16	CAP	Power-On Reset (POR) Initialization capacitor. When using the multiplexer with RPE capability, this pin is tied to a capacitor to VCC. The purpose is to ensure the internal RPE logic starts up in a known state. See "Power-On Reset (POR) Description" section for more details regarding capacitor selection. If this pin is tied directly to VCC, the RPE function will be disabled and the multiplexer will function as a normal multiplexer. The CAP pin should never be left open.

Truth Table

Inputs						Outputs	
IN0	IIN0	IN1	IIN1	SEL	Q	IQ	
0	1	X	X	0	0	1	
1	0	X	X	0	1	0	
X	X	0	1	1	0	1	
X	X	1	0	1	1	0	

Absolute Maximum Ratings ${ }^{(1)}$
Supply Voltage (V_{cc}) -0.5 V to +4.0 V
Input Voltage ($\mathrm{V}_{\text {IN }}$)- 0.5 V to V_{CC}
Input Current
Source or sink current on IN, /IN............. $\pm 50 \mathrm{~mA}$
Termination Current
Source or sink current on V_{T}................ $\pm 100 \mathrm{~mA}$
$\mathrm{V}_{\text {REF-AC }}$ Source or sink current....................... $\pm 2 \mathrm{~mA}$
Lead Temperature (soldering, 20 sec .) $260^{\circ} \mathrm{C}$
Storage Temperature (T_{s})................ $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage (V_{Cc}).................. +2.375 V to +2.625 V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$............... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Package Thermal Resistance ${ }^{(3)}$
QFN ($\theta_{J A}$) Still-Air
$50^{\circ} \mathrm{C} / \mathrm{W}$
QFN (ψ_{JB}) Junction-to-Board
$30^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics ${ }^{(4)}$

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units	
$V_{\text {cc }}$	Power Supply		2.375	2.5	2.625	V	
Icc	Power Supply Current	No load, max V_{cc}		105	140	mA	
$\mathrm{R}_{\text {IN }}$	Input Resistance (IN-to- V_{T})		45	50	55	Ω	
RDIFF_IN	Differential Input Resistance (IN-to-IIN)		90	100	110	Ω	
V_{IH}	Input High Voltage (IN, /IN)		1.2		V_{cc}	V	
VIL	Input Low Voltage (IN, IIN)		0		$\mathrm{V}_{\mathrm{IH}}-0.1$	V	
$\mathrm{V}_{\text {IN }}$	Input Voltage Swing (IN, IIN)	See Figure 1a. Note 5.	0.1		V_{cc}	V	
VIIFF_IN	Differential Input Voltage Swing \|IN-/IN		See Figure 1b.	0.2			V
$\mathrm{V}_{\text {IN_FSI }}$	Input Voltage Threshold that Triggers FSI			30	100	mV	
$\mathrm{V}_{\text {T_IN }}$	$\begin{aligned} & \text { IN-to-V }{ }_{T} \\ & \text { (IN, /IN) } \end{aligned}$				1.28	V	
$V_{\text {REF-AC }}$	Output Reference Voltage		$\mathrm{V}_{\mathrm{CC}}-1.3$	$\mathrm{V}_{\mathrm{CC}}-1.2$	$\mathrm{V}_{\mathrm{cc}}-1.1$	V	

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θ_{JA} and ψ_{JB} values are determined for a 4-layer board in still air unless otherwise stated.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
5. $\mathrm{V}_{\mathrm{IN}}(\max)$ is specified when V_{T} is floating.

LVDS Outputs DC Electrical Characteristics ${ }^{(6)}$

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \% ; \mathrm{R}_{\mathrm{L}}=100 \Omega$ across output pair or equivalent; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V OCM	Output Common Mode Voltage		1.125		1.275	V
$\Delta V_{\text {OCM }}$	Change in VOCM between complementing output states		-50		+50	mV
$V_{\text {OUT }}$	Output Voltage Swing	See Figure 1a.	250	325		mV
$V_{\text {DIFF-OUT }}$	Differential Output Voltage Swing	See Figure 1b.	500	650		mV

LVTTL/CMOS DC Electrical Characteristics ${ }^{(6)}$

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{IH}	Input HIGH Voltage		2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage				0.8	V
I_{H}	Input HIGH Current		-125		30	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current		-300			$\mu \mathrm{~A}$

Note:
6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics ${ }^{(7)}$

$\mathrm{V}_{C C}=2.5 \mathrm{~V} \pm 5 \% ; \mathrm{R}_{\mathrm{L}}=100 \Omega$ across output pair or equivalent; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency	$V_{\text {OUT }} \geq 200 \mathrm{mV}$	1.5	2.0		GHz
$\mathrm{t}_{\text {pd }}$	Differential Propagation Delay In-to-Q	$\mathrm{V}_{\text {IN }}=100 \mathrm{mV}$ to $200 \mathrm{mV}{ }^{(8,9)}$	470	625	870	ps
	In-to-Q	$\mathrm{V}_{\text {IN }}=200 \mathrm{mV}$ to $800 \mathrm{mV}{ }^{(8,9)}$	440	575	800	ps
	SEL-to-Q	RPE enabled, see Timing Diagram			17	cycles
	SEL-to-Q	RPE disabled ($\left.\mathrm{V}_{\text {SEL }}=\mathrm{V}_{\mathrm{CC}} / 2\right)$	550		900	ps
$\begin{aligned} & \mathrm{t}_{\mathrm{pd}} \\ & \text { Tempco } \end{aligned}$	Differential Propagation Delay Temperature Coefficient			451		fs $/{ }^{\circ} \mathrm{C}$
tskew	Output-to-Output Skew	Note 10		5	20	ps
	Part-to-Part Skew	Note 11			200	ps
$\mathrm{t}_{\text {Jitter }}$	Random Jitter Cycle-to-Cycle Jitter Total Jitter (TJ)	Note 12			1	$\mathrm{pS}_{\text {RMS }}$
		Note 13			1	pS ${ }_{\text {RMS }}$
		Note 14			10	pSpp
	Crosstalk-Induced Jitter	Note 15			0.7	ps ${ }_{\text {RMS }}$
$\mathrm{tr}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Time (20\% to 80\%)	At full output swing.	30	80	150	ps

Notes:

7. High-frequency AC-parameters are guaranteed by design and characterization.
8. Propagation delay is a function of rise and fall time at IN. See "Typical Operating Characteristics" for more details.
9. Propagation delay is measured with input $t_{r}, t_{f} \leq 300 \mathrm{ps}(20 \%$ to $80 \%)$ and $V_{\mathrm{IL}} \geq 800 \mathrm{mV}$.
10. Output-to-output skew is measured between two different outputs under identical transitions.
11. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
12. Random Jitter is measured with a K28.7 character pattern, measured at $<f_{\text {MAX }}$.
13. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, $T_{n}-T_{n-1}$ where T is the time between rising edges of the output signal.
14. Total Jitter definition: with an ideal clock input of frequency $<\mathrm{f}_{\mathrm{MAX}}$, no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.
15. Crosstalk is measured at the output while applying two similar differential clock frequencies that are asynchronous with respect to each other at the inputs.

Functional Description

RPE MUX and Fail-Safe Input

The SY89844U is optimized for clock switchover applications where switching from one clock to another clock without runt pulses (short cycles) is required. It features two unique circuits:

Runt-Pulse Eliminator (RPE) Circuit

The RPE MUX provides a "glitchless" switchover between two clocks and prevents any runt pulses from occurring during the switchover transition. The design of both clock inputs is identical (i.e., the switchover sequence and protection is symmetrical for both input pair, IN0 or IN1. Thus, either input pair may be defined as the primary input). If not required, the RPE function can be permanently disabled to allow the switchover between inputs to occur immediately. If the CAP pin is tied directly to VCC, the RPE function will be disabled and the multiplexer will function as a normal multiplexer.

Fail-Safe Input (FSI) Circuit

The FSI function provides protection against a selected input pair that drops below the minimum amplitude requirement. If the selected input pair drops sufficiently below the 100 mV minimum singleended input amplitude limit (V_{IN}), or 200 mV differentially $\left(\mathrm{V}_{\text {diff }} \mathrm{N}\right)$, the output will latch to the last valid clock state.

RPE and FSI Functionality

The basic operation of the RPE MUX and FSI functionality is described with the following four case descriptions. All descriptions are related to the true inputs and outputs. The primary (or selected) clock is called CLK1; the secondary (or alternate) clock is called CLK2. Due to the totally asynchronous relation of the IN and SEL signals and an additional internal protection against metastability, the number of pulses required for the operations described in cases 1-4 can vary within certain limits. Refer to "Timing Diagrams" section for detailed information.

Case \#1: Two Normal Clocks and RPE Enabled

In this case, the frequency difference between the two running clocks, INO and IN1, must not be greater than 1.5:1. For example, if the INO clock is 500 MHz , the IN1 clock must be within the range of 334 MHz to 750 MHz .
If the SEL input changes state to select the alternate clock, the switchover from CLK1 to CLK2 will occur in three stages.

- Stage 1: The output will continue to follow CLK1 for a limited number of pulses.
- Stage 2: The output will remain LOW for a limited number of pulses of CLK2.
- Stage 3: The output follows CLK2.

Timing Diagram 1

Case \#2: Input Clock Failure: Switching from a selected clock stuck HIGH to a valid clock (RPE enabled).
If CLK1 fails HIGH before the RPE MUX selects CLK2 (using the SEL pin), the switchover will occur in three stages.

- Stage 1: The output will remain HIGH for a limited number of pulses of CLK2.
- Stage 2: The output will switch to LOW and then remain LOW for a limited number of falling edges of CLK2.
- Stage 3: The output will follow CLK2.

Timing Diagram 2

Note: Output shows extended clock cycle during switchover. Pulse width for both high and low of this cycle will always be greater than 50% of the CLK2 period.

Case \#3: Input Clock Failure: Switching from a selected clock stuck Low to a valid clock (RPE enabled).
If CLK1 fails LOW before the RPE MUX selects CLK2 (using the SEL pin), the switchover will occur in two stages.

Timing Diagram 3

Case \#4: Input Clock Failure: Switching from the selected clock input stuck in an undetermined state to a valid clock input (RPE enabled).
If CLK1 fails to an undetermined state (e.g., amplitude falls below the $100 \mathrm{mV}\left(\mathrm{V}_{\mathrm{IN}}\right)$ minimum single-ended input limit, or 200 mV differentially) before the RPE MUX selects CLK2 (using the SEL pin), the switchover to the valid clock CLK2 will occur either following Case \#2 or Case \#3, depending upon the last valid state at the CLK1.

If the selected input clock fails to a floating, static, or extremely low signal swing, including 0 mV , the FSI function will eliminate any metastable condition and guarantee a stable output signal. No ringing and no undetermined state will occur at the output under these conditions.
Please note that the FSI function will not prevent duty cycle distortions or runt pulses in case of a slowly deteriorating (but still toggling) input signal. Due to the FSI function, the propagation delay will depend on rise and fall time of the input signal and on its amplitude. Refer to "Typical Operating Characteristics" for detailed information.

Timing Diagram 4

Power-On Reset (POR) Description

The SY89844U includes an internal power-on reset (POR) function to ensure the RPE logic starts-up in a known logic state once the power-supply voltage is stable. An external capacitor connected between V_{Cc} and the CAP pin (pin 16) controls the delay for the power-on reset function.
The required capacitor value calculation is based upon the time the system power supply needs to power up to a minimum of 2.3 V . The time constant for the internal power-on-reset must be greater than the time required for the power supply to ramp up to a minimum of 2.3 V .

The following formula describes this relationship:

$$
\mathrm{C}(\mu \mathrm{~F}) \geq \frac{\mathrm{t}_{\mathrm{dPs}}(\mathrm{~ms})}{12(\mathrm{~ms} \mu \mathrm{~F})}
$$

As an example, if the time required for the system power supply to power up past 2.3 V is 12 ms , then the required capacitor value on pin 16 would be:
$\mathrm{C}(\mu \mathrm{F}) \geq \frac{12 \mathrm{~ms}}{12(\mathrm{~ms} / \mu \mathrm{F})}$
$C \geq 1 \mu \mathrm{~F}$

Typical Operating Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}} \leq 300 \mathrm{ps}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ across output pair or equivalent; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Functional Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq 400 \mathrm{mV}_{\mathrm{pk}}, \mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}} \leq 300 \mathrm{ps}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ across output pair or equivalent; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Single-Ended and Differential Swings

Figure 1a. Single-Ended Voltage Swing

Figure 1b. Differential Voltage Swing

Input Stage

Figure 2. Simplified Differential Input Stage

Input Interface Applications

Figure 3a. LVPECL Interface (DC-Coupled)

Figure 3d. CML Interface (AC-Coupled)

Figure 3b. LVPECL Interface (AC-Coupled)

Figure 3e. LVDS Interface (DC-Coupled)

Option: may connect V_{T} to V_{CC}
Figure 3c. CML Interface
(DC-Coupled)

LVDS Output Interface Applications

LVDS specifies a small swing of 325 mV typical, on a nominal 1.20 V common mode above ground. The common mode voltage has tight limits to permit large

Figure 4a. LVDS Differential Measurement
variations in ground between an LVDS driver and receiver. Also, change in common mode voltage, as a function of data input, is kept to a minimum, to keep EMI low.

Figure 4b. LVDS Common Mode Measurement

Related Product and Support Documentation

Part Number	Function	Data Sheet Link
SY89843U	Precision LVPECL Runt Pulse Eliminator 2:1 MUX with 1:2 Fanout and Internal Termination	www.micrel.com/product-info/products/sy89843u.shtml.
SY89845U	Precision CML Runt Pulse Eliminator 2:1 MUX with 1:2 Fanout and Internal Termination	www.micrel.com/product-info/products/sy89845u.shtml.
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

Package Information

24-Pin QFN

Packages Notes:

1. Package meets Level 2 Moisture Sensitivity Classification.
2. All parts are dry-packed before shipment.
3. Exposed pad must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210
5962-8607001EA NTE74LS247 5962-8756601EA SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE
NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG
M74HCT4851ADWR2G AP4373AW5-7-01 NL7SZ19DBVT1G MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)
74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8

SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D.652 74HC257D. 652

