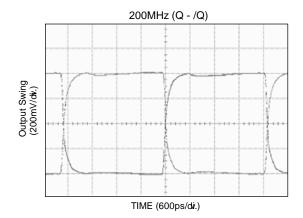
SY89854U

Precision Low Power 1:4 LVPECL Fanout Buffer/Translator with Internal Termination

General Description


The SY89854U is a 2.5V/3.3V precision, high-speed, fully differential 1:4 LVPECL fanout buffer. Optimized to provide four identical output copies with less than 20ps of skew and less than $10ps_{(pp)}$ total jitter, the SY89854U can process clock signals as fast as 2GHz.

The differential input includes Micrel's unique, patent pending 3-pin input termination architecture that interfaces to any differential signal (AC or DC-coupled) as small as 100mV (200mVpp) without any level shifting or termination resistor networks in the signal path. For AC-coupled input interface applications, an on-board output reference voltage (VREF-AC) is provided to bias the center-tap (VT) pin. The outputs are 800mV LVPECL, with fast rise/fall times guaranteed to be less than 180ps.

The SY89854U operates from a 2.5V \pm 5% supply or a 3.3V \pm 10% supply and is guaranteed over the full industrial temperature range of -40° C to $+85^{\circ}$ C. The SY89854U is part of Micrel's high-speed, Precision Edge product line.

All support documentation can be found on Micrel's web site at: www.micrel.com.

Typical Applications

United States Patent No. RE44,134
Precision Edge is a registered trademark of Micrel, Inc.

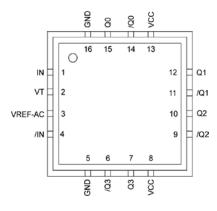
Precision Edge[®]

Features

- Precision 1:4, LVPECL fanout buffer
- Low power: 137mW (2.5V typ)
- Guaranteed AC performance over temperature and supply voltage:
 - DC- to > 2GHz Clock f_{MAX}
 - <340ps t_{pd}
 - <180ps t_r/t_f time
 - <20ps max. skew</p>
- Ultra-low jitter design:
 - <1ps_(rms) random jitter
 - <10ps_(pp) deterministic jitter
 - <10ps_(pp) total jitter (clock)
- Unique patent pending input termination and VT pin accepts DC-coupled and AC-coupled inputs (CML, PECL, LVDS)
- Typical 800mV (100k) LVPECL output swing
- Power supply 2.5V ±5% or 3.3V ±10%
- Industrial temperature range -40°C to +85°C
- Available in ultra-small (3mm x 3mm) 16-pin QFN package

Applications

- SONET and All GigE clock distribution
- Fibre Channel clock and data distribution
- Backplane distribution

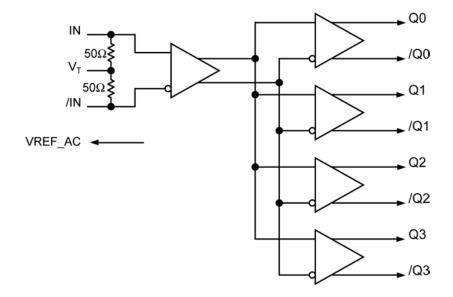

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89854UMG	QFN-16	Industrial	854U with Pb-free bar-line indicator	Pb-Free NiPdAu
SY89854UMGTR ⁽²⁾	QFN-16	Industrial	854U with Pb-free bar-line indicator	Pb-Free NiPdAu

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at $T_A = 25$ °C, DC Electricals Only.
- 2. Tape and Reel.

Pin Configuration



16-Pin QFN

Pin Description

Pin Number	Pin Name	Pin Function	
1, 4	IN, /IN	Differential Input: This input pair is the signal to be buffered. These inputs accept AC- or DC-coupled differential signals as small as 100mV (200mV _{PP}). Each pin of this pair internally terminates to a VT pin through 50Ω . Note that this input will default to an indeterminate state if left open. Please refer to the "Input Interface Applications" section for more details.	
2	VT	Input Termination Center-Tap: Each side of the differential input pair terminates to this pin. The VT pin provides a center-tap to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details.	
8,13	VCC	Positive Power Supply. Bypass with $0.1\mu F 0.01\mu F $ low ESR capacitors as of to the VCC pin as possible.	
15, 14 12, 11 10, 9 7, 6	Q0, /Q0 Q1, /Q1 Q2, /Q2 Q3, /Q3	Differential 100K LVPECL Output: These LVPECL outputs are the precision, low skew copies of the input signal. Terminate with 50Ω to V cc-2V. Unused output pairs may be left floating with no impact on jitter. See "Output Interface Applications" section.	
5, 16	GND, Exposed Pad	Ground. Ground pin and exposed pad must be connected to the same ground plane.	
3	VREF-AC	Reference Voltage: This output biases to V_{CC} –1.2V. It is used when AC coupling the inputs (IN, /IN). Connect V_{REF-AC} to the VT pin. Bypass VREF-AF pin with a 0.01 μ F low ESR capacitor to V_{CC} . Maximum sink/source capability is 1.5mA. See "Input Interface Applications" section for more details.	

Functional Block Diagram

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V_{CC})
LVPECL Output Current (I _{OUT})
Continuous 50mA
Surge100mA
Termination Current ⁽³⁾
Source or sink current on V _T ±50mA
Input Current
Source or sink current on IN, /IN ±50mA
VREF-AC Current ⁽³⁾
Source or sink current ±2mA
Lead Temperature (soldering, 20sec.)+260°C
Storage Temperature (T _s)65°C to 150°C

Operating Ratings⁽²⁾

Supply Voltage (V _{CC})	. +2.375V to +2.625V
	+3.0V to +3.6V
Ambient Temperature (T _A)	40°C to +85°C
Ambient Temperature (T _A) Package Thermal Resistance ⁽⁴⁾	
QFN (θ_{JA})	
Still-Air	60°C/W
QFN (ψ _{JB})	
Junction-to-Board	38°C/W

DC Electrical Characteristics (5)

 $T_A = -40$ °C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC}	Power Supply		2.375	2.5	2.625	V
			3.0	3.3	3.6	V
Icc	Power Supply Current	No load, max. V _{CC}		55	78	mA
R _{DIFF_IN}	Differential Input Resistance (IN, /IN)		90	100	110	Ω
R _{IN}	Input Resistance (IN-to-V _T)		45	50	55	Ω
V _{IH}	Input High Voltage (IN, /IN)	Note 6	V _{CC} -1.6		V _{CC}	V
V _{IL}	Input Low Voltage (IN, /IN)		0		V _{IH} -0.1	V
V _{IN}	Input Voltage Swing (IN, /IN)	See Figure 1a.	0.1		1.7	V
V_{DIFF_IN}	Differential Input Voltage Swing (IN, /IN)	See Figure 1b.	0.2			V
V _{T_IN}	IN-to-V _T				1.28	V

Notes:

- 1. Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to Absolute Maximum Ratings conditions for extended periods may affect device reliability.
- 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- 3. Due to the limited drive capability use for input of the same package only.
- Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θ_{JA} and ψ_{JB} are calculated based on a 4-layer board in still air, unless otherwise stated.
- 5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.\
- 6. VIH (min) not lower than 1.2V.

LVPECL Outputs DC Electrical Characteristics⁽⁷⁾

 V_{CC} = +2.5V ±5% or +3.3V ±10%; T_A = -40°C to + 85°C; R_L = 50 Ω to V_{CC} -2V, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage Q, /Q		V _{CC} -1.145		V _{CC} -0.895	٧
V _{OL}	Output LOW Voltage Q, /Q		V _{CC} -1.945		V _{CC} -1.695	V
V _{OUT}	Output Voltage Swing Q, /Q	See Figure 1a.	550	800		mV
V _{DIFF-OUT}	Differential Output Voltage Swing Q,/Q	See Figure 1b.	1100	1600		mV

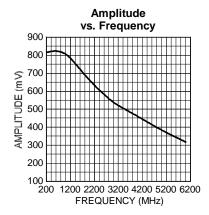
Note:

^{7.} The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

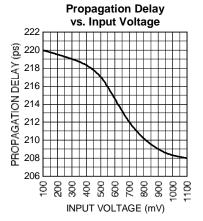
SY89854U Micrel, Inc.

AC Electrical Characteristics⁽⁸⁾

 V_{CC} = +2.5V ±5% or +3.3V ±10%; T_A = -40°C to + 85°C, R_L = 50 Ω to V_{CC} -2V, unless otherwise stated.

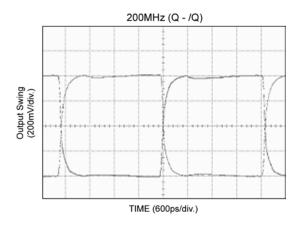

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Operating Frequency	Clock, V _{OUT} ≥ 400mV	2.0	3.5		GHz
		NRZ Data		2.5		Gbps
t _{pd}	Propagation Delay (IN-to-Q)	V _{IN} ≥ 100mV _{pk}	140	220	340	ps
t _{pd} Tempco	Differential Propagation Delay Temperature Coefficient			100		fs/°C
t _{SKEW}	Output-to-Output Skew	Note 9		4	20	ps
	Part-to-Part Skew	Note 10			150	ps
	Random Jitter (RJ)	Note 11			1	ps _{RMS}
4	Deterministic Jitter (DJ)	Note 12			10	ps _{PP}
t _{Jitter}	Cycle-to-Cycle Jitter	Note 13			1	ps _{RMS}
	Total Jitter	Note 14			10	ps _{PP}
t _{r,} t _f	Output Rise/Fall Time (20% to 80%)	At full output swing.	50	100	180	ps

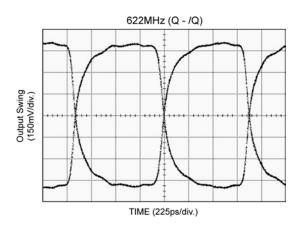
Notes:

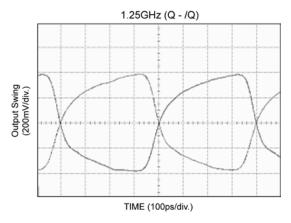

- 8. High-frequency AC-parameters are guaranteed by design and characterization.
- 9. Output-to-output skew is measured between outputs under identical conditions.
- 10. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs. Part-to-part skew includes variation in tpd.
- 11. Random jitter is measured with a K28.7 character pattern, measured at 2.5Gbps.
- 12. DJ is measured at 2.5Gbps, with both K28.5 and 2²³ 1 PRBS pattern.
- 13. Cycle-to-cycle jitter definition: The variation of periods between adjacent cycles, T_n T_{n-1} where T is the time between rising edges of the output signal.
- 14. Total jitter definition: with an ideal clock input of frequency < f_{MAX}, no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.

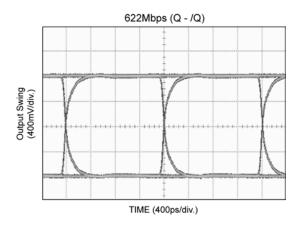
Typical Operating Characteristics

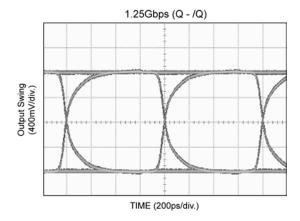
 V_{CC} = 2.5V, V_{IN} = 100m V_{pk} , T_A = 25°C, unless otherwise stated.

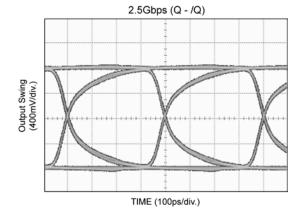







Functional Characteristics


 V_{CC} = 2.5V, V_{IN} = 100mV, T_A = 25°C, unless otherwise stated.



Single-Ended and Differential Swings

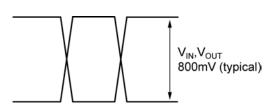


Figure 1a. Singled-Ended Voltage Swing

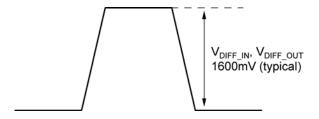
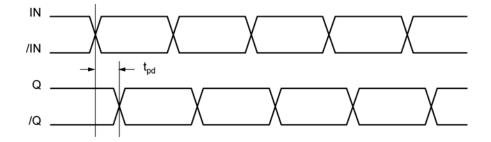
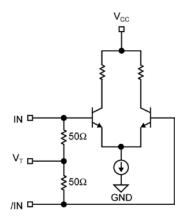




Figure1b. Differential Voltage Swing

Timing Diagrams

Input and Output Stages

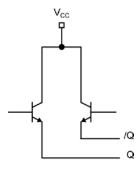
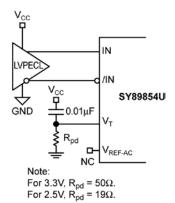
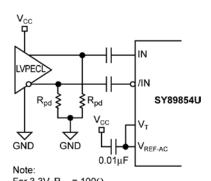
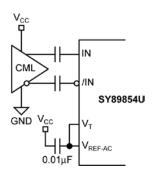




Figure 2b. Simplified LVPECL Output Stage

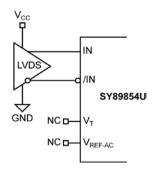
Input Interface Applications

3a. LVPECL Interface (DC-Coupled)

3b. LVPECL Interface

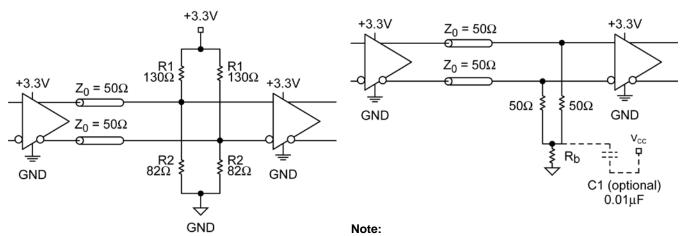

(AC-Coupled)

For 3.3V, $R_{pd} = 100\Omega$. For 2.5V, $R_{pd} = 50\Omega$.


GND NC D V_T V_{REF-AC}

Option: may connect V_T to V_{CC}

3c. CML Interface (DC-Coupled)



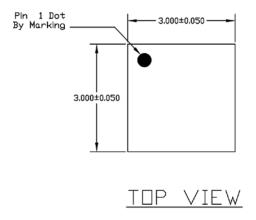
3d. CML Interface (AC-Coupled)

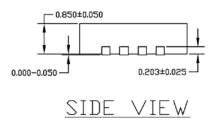
3e. LVDS Interface

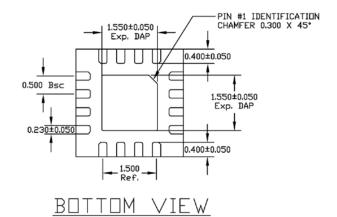
Output Interface Applications

For +2.5V systems, R1 = 250Ω , R2 = 82.5Ω

Figure 4a. Parallel Thevenin-Equivalent **Termination**


For +2.5V systems, Rb = 19Ω For +3.3V systems, Rb = 50Ω


Figure 4b. Parallel Termination (3-Resistor)


Related Product and Support Documentation

Part Number	Function	Data Sheet Link
SY58021U	4GHz, 1:4 LVPECL Fanout Buffer/Translator with Internal Termination	www.micrel.com/product-info/products/sy58021u.shtml
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

16-Pin QFN

NOTE

- ALL DIMENSIONS ARE IN MILLIMETERS.
- MAX. PACKAGE WARPAGE IS 0.05 mm.
 MAXIMUM ALLOWABE BURRS IS 0.076 mm IN ALL DIRECTIONS.
- PIN #1 ID ON TOP WILL BE LASER/INK MARKED.

Package Notes:

- Package meets Level 2 Moisture Sensitivity Classification.
- All parts are dry-packaged before shipment.
- (3) Exposed pad must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B
042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG 74VHC541FT(BE)
RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC1G126FW4-7 74LVC2G126RA3-7 NLX2G17CMUTCG
74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG
NLX2G06AMUTCG NLVVHC1G50DFT2G LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC
LE87557NQCT LE87614MQC LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NL17SG126DFT2G