SY89859U

Precision Low-Power 8:1 MUX with Internal Termination and 1:2 LVPECL Fanout Buffer

General Description

The SY89859U is a low jitter, low-power, high-speed 8:1 multiplexer with a 1:2 differential fanout buffer optimized for precision telecom and enterprise server distribution applications. The SY89859U distributes clock frequencies from DC to $>2.5 \mathrm{GHz}$, and data rates to 2.5 Gbps guaranteed over temperature and voltage.
The SY89859U differential input includes Micrel's unique, 3-pin input termination architecture that directly interfaces to any differential signal (AC- or DC-coupled) as small as 100 mV (200 mVpp) without level shifting or termination resistor networks in the signal path. The outputs are $800 \mathrm{mV}, 100 \mathrm{~K}$-compatible LVPECL with extremely fast rise/fall time guaranteed to be less than 180ps.
The SY89859U features a patent-pending isolation design that significantly improves on channel-tochannel crosstalk-induced jitter performance.
The SY89859U operates from a $2.5 \mathrm{~V} \pm 5 \%$ or 3.3 V $\pm 10 \%$ supply and is guaranteed over the full industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The SY89859U is part of Micrel's high-speed, Precision Edge ${ }^{\circledR}$ product line.
All support documentation can be found on Micrel's web site at: www.micrel.com.

United States Patent No. RE44,134
Precision Edge is a registered trademark of Micrel, Inc.

Features

- Selects between 1 of 8 inputs, and provides 2 precision, low skew 100K-compatible LVPECL output copies
- Low power: 150 mW typ. (2.5V)
- Guaranteed AC performance over temperature and voltage:
- DC to $>2.5 \mathrm{Gbps}$
- DC to $>2.5 \mathrm{GHz}$
- <690ps propagation delay
- <180ps $\mathrm{t}_{\mathrm{r}} \mathrm{l}_{\mathrm{f}}$ time
- <20ps skew (output-to-output)
- Unique, patent-pending channel-to-channel isolation design provides superior crosstalk performance
- Ultra-low jitter design:
- $<1 \mathrm{ps}_{\mathrm{RMS}}$ random jitter
- $<10 p s_{\text {pp }}$ deterministic jitter
- <10pspp total jitter (clock)
- $<1 \mathrm{ps}_{\text {RMS }}$ cycle-to-cycle jitter
- $<0.7 \mathrm{ps}_{\text {RMS }}$ crosstalk-induced jitter
- Unique, patented input termination and VT pin accepts DC- and AC-coupled inputs (CML, PECL, LVDS)
- Power supply $2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%$
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range
- Available in $44-$ pin ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$) QFN package

Applications

- Data communication systems
- All SONET/SDH data/clock applications
- All Fibre Channel applications
- All Gigabit Ethernet applications

Functional Block Diagram

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89859UMY	QFN-44	Industrial	SY89859U with Pb-Free bar-line indicator	Matte-Sn Pb-Free
SY89859UMYTR $^{(2)}$	QFN-44	Industrial	SY89859U with Pb-Free bar-line indicator	Matte-Sn Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, DC Electricals only.
2. Tape and Reel.

Pin Configuration

Truth Table

SEL2	SEL1	SELO	Q	IQ
L	L	L	INO	/INO
L	L	H	IN1	/IN1
L	H	L	IN2	/IN2
L	H	H	IN3	/IN3
H	L	L	IN4	/IN4
H	L	H	IN5	/IN5
H	H	L	IN6	/IN6
H	H	H	IN7	/IN7

Pin Description

Pin Number	Pin Name	Pin Function	
20, 18	INO, /INO	Differential Inputs: These input pairs are the differential signal inputs to the device. Inputs accept AC- or DC-coupled signals as small as 100 mV (200 mV pp). Each pin of a pair internally terminates to a VT pin through 50Ω. Note that these inputs will default to an indeterminate state if left open. Please refer to the "Input Interface Applications" section for more details.	
16, 14	IN1, /IN1		
13, 11	IN2, /IN2		
9, 7	IN3, /IN3 IN4, /IN4		
1, 43	IN5, /IN5		
42, 40	IN6, IIN6		
38, 36	IN7, IIN7		
19, 15	VT0, VT1	Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. The VT pins provide a center-tap to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details. For a CML or LVDS inputs, the VT pin is left floating.	
12, 8	VT2, VT3		
4, 44	VT4, VT5		
41, 37	VT6, VT7		
17	VREF-AC0	Reference Voltage: These outputs bias to $\mathrm{V}_{\mathrm{CC}}-1.2 \mathrm{~V}$. They are used when AC coupling the inputs (IN, /IN). For AC-coupled applications, connect VREF-AC to the VT pin and bypass with a 0.01μ F low ESR capacitor to VCC. See "Input Interface Applications" section for more details.	
10	VREF-AC1		
2	VREF-AC2		
39	VREF-AC3		
21	SELO	The single-ended TTL/CMOS-compatible inputs select the inputs to the multiplexer. Note that this input is internally connected to a $25 \mathrm{k} \Omega$ pullup resistor and will default to a logic HIGH state if left open. The threshold voltage is $\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{Cc}} / 2$.	
22	SEL1		
35	SEL2		
24, 27, 29, 32	VCC	Positive Power Supply. Bypass with $0.1 \mu \mathrm{~F} \\| 0.01 \mu \mathrm{~F}$ low ESR capacitors and place as close to each VCC pin as possible.	
$\begin{aligned} & 25,26 \\ & 30,31 \end{aligned}$	$\begin{aligned} & \text { Q0, /Q0 } \\ & \text { Q1, /Q1 } \end{aligned}$	Differential Outputs: These 100K-compatible LVPECL output pairs are the outputs of the device. Unused output pairs may be left open. Each output is designed to drive 800 mV into 50Ω terminated to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$.	
23, 28, 33	GND Exposed Pad	Ground. GND and exposed pad must both be connected to the same ground plane.	

Absolute Maximum Ratings ${ }^{(1)}$

Supply Voltage (V_{cc})......................... -0.5 V to +4.0 V
Input Voltage
SELO, SEL1, SEL2-0.5V to V_{cc}
INO, /INO, IN1, /IN1,.../IN7, /IN7-0.5V to V_{cc}
LVPECL Output Current (lout)
Continuous.. $\pm 50 \mathrm{~mA}$
Surge .. $\pm 100 \mathrm{~mA}$
Termination Current
Source or sink current
VT0, VT1, VT2,..VT7............................ $\pm 100 \mathrm{~mA}$
Input Current
Source or sink current
INO, /INO, IN1, /IN1,...IN7, /IN7 $\pm 50 \mathrm{~mA}$
VREF Output Current
VREF-ACO, VREF-AC1..., VREF-AC3....... $\pm 2 m A$
Lead Temperature (soldering, 20 sec .).......... $+260^{\circ} \mathrm{C}$
Storage Temperature $\left(T_{s}\right)$................ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

DC Electrical Characteristics ${ }^{(4)}$

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units	
$V_{\text {cc }}$	Power Supply		2.375	2.5	2.625	V	
			3.0	3.3	3.6	V	
Icc	Power Supply Current	No load, max. V ${ }_{\text {cc }}$		60	85	mA	
RIN	Input Resistance (IN-to- V_{T})		45	50	55	Ω	
RDIFF_IN	Differential Input Resistance (IN-to-IIN)		90	100	110	Ω	
V_{IH}	Input High Voltage (IN, /IN)	Note 5	$\mathrm{V}_{\mathrm{cc}}-1.6$		Vcc	V	
VIL	Input Low Voltage (IN, /IN)		0		$\mathrm{V}_{1 \mathrm{H}}-0.1$	V	
$\mathrm{V}_{\text {IN }}$	Input Voltage Swing (IN, /IN)	See Figure 1a.	0.1		1.7	V	
VIIFF_IN	Differential Input Voltage Swing \|IN-to-/IN		See Figure 1b.	0.2			V
$\mathrm{V}_{\text {T_IN }}$	IN-to- V_{T} (IN, /IN)				1.28	V	
$V_{\text {REF-AC }}$	Output Reference Voltage		$\mathrm{V}_{\mathrm{cc}}-1.3$	$\mathrm{V}_{\mathrm{cc}}-1.2$	$\mathrm{V}_{\mathrm{cc}}-1.1$	V	

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θ_{JA} and $\Psi_{J B}$ values are determined for a 4-layer board in still-air, unless otherwise stated.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
5. $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ not lower than 1.2 V .

100K LVPECL Output DC Electrical Characteristics ${ }^{(6)}$

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$V_{\text {OH }}$	Output HIGH Voltage (Q, /Q)		$V_{\mathrm{CC}}-1.145$		$\mathrm{~V}_{\mathrm{CC}}-0.895$	V
$\mathrm{~V}_{\text {OL }}$	Output LOW Voltage (Q, /Q)		$\mathrm{V}_{\mathrm{CC}}-1.945$		$\mathrm{~V}_{\mathrm{CC}}-1.695$	V
$V_{\text {OUT }}$	Output Differential Swing	See Figure 1a.	550	800		mV
$V_{\text {DIFF_OUT }}$	Differential Output Voltage Swing	See Figure 1b.	1100	1600	mV	

LVTTL/CMOS DC Electrical Characteristics ${ }^{(6)}$

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{IH}	Input HIGH Voltage		2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage				0.8	V
I_{IH}	Input HIGH Current	$\mathrm{I}_{\mathrm{IH}} @ \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$	-125		40	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current	$\mathrm{I}_{\mathrm{IL}} @ \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	-300			$\mu \mathrm{~A}$

Note:
6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics ${ }^{(7)}$

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathbb{I N}} \geq 100 \mathrm{mV}(200 \mathrm{mVpp}) ; \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency		2.5			Gbps
			2.5	3.5		GHz
$\mathrm{t}_{\text {pd }}$	Differential Propagation Delay$\begin{aligned} & \text { IN-to-Q } \\ & \text { SEL-to-Q } \end{aligned}$		360	475	640	ps
			200	600	850	ps
t_{pd} Tempco	Differential Propagation Delay Temperature Coefficient	IN-to-Q		300		fs $/{ }^{\circ} \mathrm{C}$
		SEL-to-Q		400		
tskew	Output-to-Output Skew Part-to-Part Skew	Note 8	5		20	ps
		Note 9			200	ps
$\mathrm{t}_{\text {IITTER }}$	Data Random Jitter (RJ) Deterministic Jitter (DJ)	Note 10			1	pS ${ }_{\text {RMS }}$
		Note 11			10	pS ${ }_{\text {PP }}$
	Clock Cycle-to-Cycle Jitter Total Jitter (TJ)	Note 12			1	pS ${ }_{\text {RMS }}$
		Note 13			10	pS ${ }_{\text {Pp }}$
	Adjacent Channel Crosstalk-induced Jitter	Note 14			0.7	pS ${ }_{\text {RMS }}$
	Output Rise/Fall Time (20\% to 80\%)	At full output swing.	50	110	180	ps

Notes:
7. High-frequency AC-parameters are guaranteed by design and characterization.
8. Output-to-output skew is measured between two different outputs under identical input transitions.
9. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
10. Random jitter is measured with a K28.7 character pattern, measured at $<f_{\text {MAX }}$.
11. Deterministic jitter is measured at 2.5 Gbps with both K 28.5 and $2^{23}-1$ PRBS pattern.
12. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, $T_{n}-T_{n-1}$ where T is the time between rising edges of the output signal.
13. Total jitter definition: with an ideal clock input of frequency $<f_{M A X}$, no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.
14. Crosstalk-induced jitter is defined as the added jitter that results from signals applied to two adjacent channels. It is measured at the output while applying two similar, differential clock frequencies that are asynchronous with respect to each other at the inputs.

Single-Ended and Differential Swings

Figure 1a. Single-Ended Voltage Swing

Figure 1b. Differential Voltage Swing

Typical Operating Characteristics

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}(200 \mathrm{mVpp}), \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Functional Characteristics

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}(200 \mathrm{mVpp}), \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Input and Output Stages

Figure 2a. Simplified Differential Input Stage

Figure 2b. Simplified LVPECL Output Stage

Input Interface Applications

For $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{pd}}=50 \Omega$.

$$
\text { For } \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{pd}}=19 \Omega
$$

Figure 3a. LVPECL Interface (DC-Coupled)

Figure 3d. CML Interface (AC-Coupled)

For 3.3V, $R_{p d}=100 \Omega$.
For $2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{pd}}=50 \Omega$.

Figure 3b. LVPECL Interface (AC-Coupled)

Figure 3e. LVDS Interface

LVPECL Output Interface Applications

LVPECL has high input impedance, very low output (open emitter) impedance, and small signal swing which result in low EMI. LVPECL is ideal for driving 50 - - and 100Ω-controlled impedance transmission lines. There are several techniques for terminating

Figure 4a. Parallel Thevenin-Equivalent Termination

Note:

For 2.5 V system, $\mathrm{R} 1=250 \Omega, \mathrm{R} 2=62.5 \Omega$.
the LVPECL output including: Parallel TerminationThevenin Equivalent, Parallel Termination (3Resistor), and AC-Coupled Termination. Unused output pairs may be left floating. However, singleended outputs must be terminated, or balanced.

Figure 4b. Parallel Termination (3-Resistor)
Note:
For 2.5 V system, $\mathrm{Rb}=19 \Omega$.

Related Product and Support Documentation

Part Number	Function	Data Sheet Link
SY58037U	Ultra Precision 8:1 MUX with Internal Termination and 1:2 CML Fanout Buffer	http://www.micrel.com/product-info/products/sy58037u.shtml
SY58038U	Ultra Precision 8:1 MUX with Internal Termination and 1:2 LVPECL Fanout Buffer	http://www.micrel.com/product-info/products/sy58038u.shtml
SY58039U	Ultra Precision 8:1 MUX with Internal Termination and 1:2 400mV LVPECL Fanout Buffer	http://www.micrel.com/product-info/products/sy58039u.shtml
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

Package Information

NOTES :

1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M. - 1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS, O IS IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.

DIMENSION D APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL. THE DIMENSION O SHOULD NOT BE MEASURED IN THAT RADIUS AREA,
\triangle ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
6. MAX. PACKAGE WARPAGE IS 0.05 mm .
7. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.
\triangle PIN 1 ID ON TOP WLL BE LASER MARKED.
\triangle bllateral coplanarity zone applies to the exposed heat sink slug as well as the TERMINALS.
10. THIS DRAWMNG CONFORMES TO JEDEC REGISTERED OUTLINE MO-220

PCB Thermal Consideration for 44-Pin QFN ${ }^{\text {M }}$ Package (Always solder, or equivalent, the exposed pad to the PCB)

Package Notes:

1. Package meets Level 2 qualification.
2. All parts are dry-packaged before shipment.
3. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
 TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210
5962-8607001EA NTE74LS247 5962-8756601EA 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG M74HCT4851ADWR2G AP4373AW5-7-01 MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA JM38510/30702BEA 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8 SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D. 652 74HC257D. 652 74HCT153D. 652

