FEATURES

■ Integrated programmable clock divider and 1:2 fanout buffer

- Guaranteed AC performance over temperature and voltage:
- $>2.0 \mathrm{GHz} \mathrm{f}_{\mathrm{MAX}}$
- <200ps trlt t_{f}
- < 15ps within device skew

■ Low jitter design:

- <10ps ${ }_{\text {pp }}$ total jitter
- $<1 \mathrm{ps}_{\text {RMS }}$ cycle-to-cycle jitter
- Unique input termination and V_{T} Pin for DC-coupled and AC-coupled Inputs; CML, PECL, LVDS and HSTL
- LVDS compatible outputs
- TTLICMOS inputs for select and reset

■ Parallel programming capability
■ Programmable divider ratios of 1, 2, 4, 8 and 16
■ Low voltage operation 2.5 V

- Output disable function
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range

■ Available in 16 -pin ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) MLF ${ }^{\circledR}$ package

APPLICATIONS

■ SONETISDH line cards
■ Transponders
■ High-end, multiprocessor servers
FUNCTIONAL BLOCK DIAGRAM

United States Patent No. RE44,134
Precision Edge is a registered trademark of Micrel, Inc.
MicroLeadFrame and MLF are registered trademarks of Amkor Technology, Inc.

DESCRIPTION

This low-skew, low-jitter device is capable of accepting a high-speed (e.g., 622 MHz or higher) CML, LVPECL, LVDS or HSTL clock input signal and dividing down the frequency using a programmable divider to create a lower speed version of the input clock. Available divider ratios are 2, 4, 8 and 16 , or straight pass-through.

The differential input buffer has a unique internal termination design that allows access to the termination network through a V_{\top} pin. This feature allows the device to easily interface to different logic standards. A $V_{\text {REF-AC }}$ reference is included for AC-coupled applications.

The /RESET input asynchronously resets the divider. In the pass-through function (divide by 1) the /RESET synchronously enables or disables the outputs on the next falling edge of IN (rising edge of /IN).

TYPICAL PERFORMANCE

PACKAGE/ORDERING INFORMATION

16-Pin MLF ${ }^{\circledR}$ (MLF-16)

Ordering Information(1)

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89875UMI	MLF-16	Industrial	875 U	Sn-Pb
SY89875UMITR $^{(2)}$	MLF-16	Industrial	875 U	Sn-Pb
SY89875UMG $^{(3)}$	MLF-16	Industrial	875 U with Pb-Free bar line indicator	NiPdAu Pb-Free
SY89875UMGTR ${ }^{(2,3)}$	MLF-16	Industrial	$875 U$ with Pb-Free bar line indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{DC}$ Electricals only.
2. Tape and Reel.
3. Pb -Free package is recommended for new designs.

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
12, 9	IN, /IN	Differential Input: Internal 50ý termination resistors to V_{T} input. Flexible input accepts any differential input. See "Input Interface Applications" section.
1, 2, 3, 4	$\begin{aligned} & \text { Q0, /Q0 } \\ & \text { Q1, /Q1 } \end{aligned}$	Differential Buffered LVDS Outputs: Divided by 1, 2, 4, 8 or 16. See "Truth Table." Unused output pairs must be terminated with 100ý across the different pair.
16, 15, 5	S0, S1, S2	Select Pins: See "Truth Table." LVTTL/CMOS logic levels. Internal 25ký pull-up resistor. Logic HIGH if left unconnected (divided by 16 mode.) Input threshold is $\mathrm{V}_{\mathrm{CC}} / 2$.
6	NC	No Connect.
8	/RESET, /DISABLE	LVTTL/CMOS Logic Levels: Internal 25ký pull-up resistor. Logic HIGH if left unconnected. Apply LOW to reset the divider (divided by $2,4,8$ or 16 mode). Also acts as a disable/enable function. The reset and disable function occurs on the next high-to-low clock input transition. Input threshold is $\mathrm{V}_{\mathrm{CC}} / 2$.
10	VREF-AC	Reference Voltage: Equal to $\mathrm{V}_{\mathrm{CC}}-1.4 \mathrm{~V}$ (approx.). Used for AC -coupled applications only. Decouple the $\mathrm{V}_{\text {REF-AC }}$ pin with a $0.01 \mu \mathrm{~F}$ capacitor. See "Input Interface Applications" section.
11	VT	Termination Center-Tap: For CML or LVDS inputs, leave this pin floating. Otherwise, See Figures 4a to 4f, "Input Interface Applications" section.
7, 14	VCC	Positive Power Supply: Bypass with $0.1 \mu \mathrm{~F} / / 0.01 \mu \mathrm{~F}$ low ESR capacitor.
13	GND Exposed	Ground. Exposed pad must be connected to the same potential as the GND pin.

TRUTH TABLE

/RESET $^{(\mathbf{1})}$	S2	S1	S0	Outputs
1	0	X	X	Reference Clock (pass through)
1	1	0	0	Reference Clock $\div 2$
1	1	0	1	Reference Clock $\div 4$
1	1	1	0	Reference Clock $\div 8$
1	1	1	1	Reference Clock $\div 16$
$0^{(1)}$	X	X	X	$\mathrm{Q}=$ LOW, /Q $=\mathrm{HIGH}$ Clock Disable

Note 1. Reset/Disable function is asserted on the next clock input (IN, /IN) high-to-low transition.

Absolute Maximum Ratings ${ }^{(\text {Note 1) }}$
Supply Voltage (V_{CC}) -0.5 V to +4.0 V
Input Voltage ($\mathrm{V}_{\text {IN }}$) -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.3$
ECL Output Current (IouT)
Continuous .. 50 mA
Surge ...100mA
Input Current IN, /IN ($\mathrm{I}_{\text {IN }}$) $\pm 50 \mathrm{~mA}$
V_{T} Current ($\mathrm{l}_{\mathrm{V}^{\prime}}$) ... $\pm 100 \mathrm{~mA}$
$\mathrm{V}_{\text {REF-AC }}$ Sink/Source Current ($\mathrm{I}_{\text {VREF-AC }}$), Note $3 \pm 2 \mathrm{~mA}$
Lead Temperature (soldering 20 sec.) $260^{\circ} \mathrm{C}$
Storage Temperature (T_{S}) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Absolute Maximum Ratings ${ }^{(\text {Note } 1)}$
Supply Voltage (V_{cc})- .5 V to +4.0 V
Input Voltage ($\mathrm{V}_{\text {IN }}$)
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.3$

Surge
100 mA
Input Current IN, /IN (I_{IN}) ... $\pm 50 \mathrm{~mA}$
V_{T} Current ($\mathrm{I}_{\mathrm{V} T}$) $\pm 100 \mathrm{~mA}$
$\mathrm{V}_{\text {REF-AC }}$ Sink/Source Current (${ }_{\text {VREF-AC }}$), Note $3 \ldots . . . \pm 2 \mathrm{~mA}$
Lead Temperature (soldering 20 sec.) $260^{\circ} \mathrm{C}$
Storage Temperature (T_{S}) \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(\text {Note } 2)}$

Supply Voltage (V_{CC})....................................... $+2.5 \mathrm{~V} \pm 5 \%$
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$........................ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance
$\mathrm{MLF}^{\circledR}\left(\theta_{\mathrm{JA}}\right)$
Still-Air ... $60^{\circ} \mathrm{C} / \mathrm{W}$
500lfpm ... $54^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{MLF}^{\circledR}\left(\psi_{\mathrm{JB}}\right)$, Note 4
Junction-to-Board .. $32^{\circ} \mathrm{C} / \mathrm{W}$

Note 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratlng conditions for extended periods may affect device reliability.
Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
Note 3. Due to the limited drive capability use for input of the same package only.
Note 4. Junction-to-board resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the pcb.

DC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units	
V_{CC}	Power Supply		2.375		2.625	V	
I_{CC}	Power Supply Current	No load, max. V_{CC}		70	95	mA	
R_{IN}	Differential Input Resistance (IN-to-IIN)		90	100	110	y	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage (IN, /IN)	Note 3	0.1	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage (IN, /IN)	Note 3	-0.3	-	$\mathrm{V}_{\mathrm{IH}}-0.1$	V	
$\mathrm{~V}_{\text {IN }}$	Input Voltage Swing	Note 4	0.1	-	V_{CC}	V	
$\mathrm{V}_{\text {DIFF_IN }}$	Differential Input Voltage Swing	Note 5	0.2	-	-	V	
$\\|_{\text {IN }}$	Input Current (IN, /IN)	Note 3	-	-	45	mA	
$\mathrm{~V}_{\text {REF-AC }}$	Reference Voltage	Note 6	$\mathrm{V}_{\mathrm{CC}}-1.525$	$\mathrm{~V}_{\mathrm{CC}}-1.425$	$\mathrm{~V}_{\mathrm{CC}}-1.325$	V	

Note 1. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
Note 2. Specification for packaged product only.
Note 3. Due to the internal termination (see Figure 2 a) the input current depends on the applied voltages at IN , /IN and V_{T} inputs. Do not apply a combination of voltages that causes the input current to exceed the maximum limit!
Note 4. See "Timing Diagram" for V_{IN} definition. $\mathrm{V}_{\mathrm{IN}}(\mathrm{Max})$ is specified when V_{T} is floating.
Note 5. See "Typical Operating Characteristics" section for $\mathrm{V}_{\text {DIFF }}$ definition.
Note 6. Operating using V_{IN} is limited to $A C$-coupled PECL or CML applications only. Connect directly to V_{T} pin.

LVDS DC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	Note 3, 4	250	350	400	mV
$\mathrm{V}_{\text {OH }}$	Output High Voltage	Note 3			1.475	V
$\mathrm{~V}_{\text {OL }}$	Output Low Voltage	Note 3	0.925			V
$\mathrm{~V}_{\text {OCM }}$	Output Common Mode Voltage	Note 4	1.125		1.375	V
$\Delta \mathrm{~V}_{\text {OCM }}$	Change in Common Mode Voltage		-50		50	mV

Note 1. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
Note 2. Specification for packaged product only.
Note 3. Measured as per Figure 2a, 100ý across Q and $/ Q$ outputs.
Note 4. Measured as per Figure 2b.

LVTTL/CMOS DC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max
V_{IH}	Input HIGH Voltage		2.0		
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage			V	
I_{IH}	Input HIGH Current		-125		0.8
I_{IL}	Input LOW Current		V		

Note 1. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
Note 2. Specification for packaged product only.

AC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Input Frequency	Output Swing ž200mV	2.0	2.5		GHz
t_{PD}	Differential Propagation Delay IN to Q	Input Swing < 400mV	590	690	870	ps
		Input Swing ž 400mV	540	690	820	ps
$\mathrm{t}_{\text {SKEW }}$	Within-Device Skew (diff.)	Note 3		5	15	ps
	Part-to-Part Skew (diff.)	Note 3			280	ps
t_{RR}	Reset Recovery Time	Note 4	600			ps
$\mathrm{t}_{\text {JITTER }}$	Cycle-to-Cycle Jitter	Note 5			1	$\mathrm{ps}_{\text {RMS }}$
	Total Jitter	Note 6			10	$\mathrm{pS}_{\text {PP }}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise/Fall Time (20\% to 80\%)		70	120	200	ps

Note 1. Measured with 400 mV input signal, 50% duty cycle, all outputs loaded with 100 ý across each output pair, unless otherwise stated.
Note 2. Specification for packaged product only.
Note 3. Skew is measured between outputs under identical transitions.
Note 4. See "Timing Diagram."
Note 5. Cycle-to-cycle jitter definition: the variation in period between adjacent cycles over a random sample of adjacent cycle pairs. $T_{j i t t e r}$ cc $=T_{n}-T_{n+1}$, where T is the time between rising edges of the output signal.
Note 6. Total jitter definition: with an ideal clock input of frequency $-f_{\text {MAX }}$, no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.

TIMING DIAGRAM

TYPICAL OPERATING CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

TYPICAL OPERATING CHARACTERISTICS (Continued)

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

TIME (300ps/div.)

TIME (140ps/div.)

TIME (80ps/div.)

DEFINITION OF SINGLE-ENDED AND DIFFERENTIAL SWINGS

Figure 1a. Single-Ended Swing

Figure 1b. Differential Swing

INPUT INTERFACE APPLICATIONS

Figure 2a. Simplified Differential Input Buffer

Figure 2b. Simplified TTL/CMOS Input Buffer

LVDS OUTPUTS

LVDS (Low Voltage Differential Swing) specifies a small swing of 350 mV typical, on a nominal 1.25 V common mode above ground. The common mode voltage has tight limits

Figure 3a. LVDS Differential Measurement
to permit large variations in ground between an LVDS driver and receiver. Also, change in common mode voltage, as a function of data input, is also kept tight, to keep EMI low.

Figure 3b. LVDS Common Mode Measurement

INPUT INTERFACE APPLICATIONS

Figure 4a. DC-Coupled CML Input Interface

Figure 4d. AC-Coupled CML Input Interface

Figure 4b. AC-Coupled CML Input Interface

Figure 4e. LVDS Input Interface

Figure 4c. DC-Coupled PECL Input Interface

Figure 4f. HSTL Input Interface

RELATED PRODUCT AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY89872U	$2.5 \mathrm{~V}, 2.5 \mathrm{GHz}$ Any Diff. In-to-LVDS Programmable Clock Divider/Fanout Buffer $\mathrm{w} /$ Internal Termination	http://www.micrel.com/product-info/products/sy89872u.shtml
	MLF $^{\circledR}$ Application Note	http://www.amkor.com/products/notes_papers/mlf_appnote_0902.pdf
HBW Solutions	New Products and Applications	http://www.micrel.com/product-info/products/solutions.shtml

16-PIN MicroLeadFrame ${ }^{\circledR}$ (MLF-16)

PCB Thermal Consideration for 16-Pin MLF ${ }^{\circledR}$ Package (Always solder, or equivalent, the exposed pad to the PCB)

Package Notes:
Note 1. Package meets Level 2 moisture sensitivity classification, and are shipped in dry-pack form.
Note 2. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

tel + 1 (408) 944-0800 FAX + 1 (408) 474-1000 web http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

$$
\text { © } 2005 \text { Micrel, Incorporated. }
$$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR 4RCD0232KC1ATG RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7211-1HE40-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I

