Positive Doubling Charge Pumps with Shutdown in a SOT-23 Package

Features

- Charge Pumps in 6-Pin SOT-23A Package
- >99\% Typical Voltage Conversion Efficiency
- Voltage Doubling
- Input Voltage Range, TC1240: +2.5 V to +4.0 V ,

TC1240A: +2.5 V to +5.5 V

- Low Output Resistance, TC1240: 17Ω (Typical)

TC1240A: 12Ω (Typical)

- Only Two External Capacitors Required
- Low Supply Current, TC1240: $180 \mu \mathrm{~A}$ (Typical)

TC1240A: $550 \mu \mathrm{~A}$ (Typical)

- Power-Saving Shutdown Mode ($1 \mu \mathrm{~A}$ Maximum)
- Shutdown Input Fully Compatible with 1.8V Logic Systems

Applications

- Cellular Phones
- Pagers
- PDAs, Portable Data Loggers
- Battery Powered Devices
- Handheld Instruments

Package Type

6-Pin SOT-23A

NOTE: 6-Pin SOT-23A is equivalent to the EIAJ (SC-74A)

General Description

The TC1240/TC1240A is a doubling CMOS charge pump voltage converter in a small 6-Pin SOT-23A package. The TC1240 doubles an input voltage that can range from +2.5 V to +4.0 V , while the TC1240A doubles an input voltage that can range from +2.5 V to +5.5 V . Conversion efficiency is typically $>99 \%$. Internal oscillator frequency is 160 kHz for both devices. The TC1240 and TC1240A have an active-high shutdown that limits the current consumption of the devices to less than $1 \mu \mathrm{~A}$.

External component requirement is only two capacitors for standard voltage doubler applications. All other circuitry (including control, oscillator and power MOSFETs) are integrated on-chip. Typical supply current is $180 \mu \mathrm{~A}$ for the TC1240 and $550 \mu \mathrm{~A}$ for the TC1240A. Both devices are available in a 6-Pin SOT23A surface mount package.

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †
Input Voltage ($\mathrm{V}_{\text {IN }}$ to GND)
TC1240 +4.5V, -0.3
TC1240A...................................... $+5.8 \mathrm{~V},-0.3 \mathrm{~V}$
Output Voltage ($\mathrm{V}_{\text {OUT }}$ to GND)
$\begin{aligned} & \text { TC1240 ... } \mathrm{V}_{\text {IN }}-0.3 \mathrm{~V} \\ & \text { TC1240A }-0.3 \mathrm{~V} \end{aligned}$
Short-Circuit Duration: $\mathrm{V}_{\text {OUT }}$ to GNDIndefinite
Thermal Resistance $210^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$).................... 600 mW
Operating Temperature Range............ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature (Unbiased) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

\dagger Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC1240 ELECTRICAL SPECIFICATIONS

Electrical Specifications: Unless otherwise noted, typical values apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Minimum and maximum values apply for $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {IN }}=+2.8 \mathrm{~V}, \mathrm{C}_{1}=\mathrm{C}_{2}=3.3 \mu \mathrm{~F}$, SHDN $=$ GND.

Parameters	Sym	Min	Typ	Max	Units	Conditions
Supply Current	I_{DD}	-	180	300	$\mu \mathrm{~A}$	$\mathrm{R}_{\mathrm{LOAD}}=\infty$
Shutdown Supply Current	$\mathrm{I}_{\mathrm{SHDN}}$	-	0.1	1.0	$\mu \mathrm{~A}$	$\mathrm{SHDN}=\mathrm{V}_{\mathrm{IN}}$
Minimum Supply Voltage	$\mathrm{V}_{\mathrm{MIN}}$	2.5	-	-	V	$\mathrm{R}_{\mathrm{LOAD}}=1.0 \mathrm{k} \Omega$
Maximum Supply Voltage	$\mathrm{V}_{\mathrm{MAX}}$	-	-	4.0	V	$\mathrm{R}_{\mathrm{LOAD}}=1.0 \mathrm{k} \Omega$
Oscillator Frequency	$\mathrm{F}_{\mathrm{OSC}}$	-	160	-	kHz	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Switching Frequency (Note 1)	F_{SW}	40	80	125	kHz	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Shutdown Input Logic High	V_{IH}	1.4	-	-	V	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{MIN}}$ to $\mathrm{V}_{\mathrm{MAX}}$
Shutdown Input Logic Low	V_{IL}	-	-	0.4	V	$\mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{MIN}}$ to $\mathrm{V}_{\mathrm{MAX}}$
Power Efficiency	$\mathrm{P}_{\mathrm{EFF}}$	86	93	-	$\%$	$\mathrm{R}_{\mathrm{LOAD}}=1.0 \mathrm{k} \Omega$
Voltage Conversion Efficiency	$\mathrm{V}_{\mathrm{EFF}}$	97.5	99.96	-	$\%$	$\mathrm{R}_{\mathrm{LOAD}}=\infty$
Output Resistance (Note 2)	$\mathrm{R}_{\mathrm{OUT}}$	-	17	-	Ω	$\mathrm{R}_{\mathrm{LOAD}}=1.0 \mathrm{k} \Omega$
		-	-	30		$\mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note 1: Switching frequency is one-half internal oscillator frequency.
2: Capacitor contribution is approximately 26% of the output impedance [ESR = 1 / switching frequency x capacitance].

TC1240A ELECTRICAL SPECIFICATIONS

Electrical Specifications: Unless otherwise noted, typical values apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Minimum and maximum values apply for $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, and $\mathrm{V}_{\mathrm{IN}}=+5.0 \mathrm{~V}, \mathrm{C}_{1}=\mathrm{C}_{2}=3.3 \mu \mathrm{~F}, \mathrm{SHDN}=\mathrm{GND}$.

Parameters	Sym	Min	Typ	Max	Units	Conditions
Supply Current	I_{DD}	-	550	900	$\mu \mathrm{A}$	$\mathrm{R}_{\text {LOAD }}=\infty$
Shutdown Supply Current	$\mathrm{I}_{\text {SHDN }}$	-	0.01	1.0	$\mu \mathrm{A}$	SHDN $=\mathrm{V}_{\text {IN }}$
Minimum Supply Voltage	$\mathrm{V}_{\text {MIN }}$	2.5	-	-	V	
Maximum Supply Voltage	$\mathrm{V}_{\text {MAX }}$	-	-	5.5	V	
Output Current	$\mathrm{I}_{\text {LOAD }}$	20	-	-	mA	
Sum of the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of the internal MOSFET Switches	$\mathrm{R}_{\text {SW }}$	-	4	8	Ω	$\mathrm{I}_{\text {LOAD }}=20 \mathrm{~mA}$
Oscillator Frequency	$\mathrm{F}_{\text {OSC }}$	-	160	-	kHz	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Switching Frequency (Note 1)	$\mathrm{F}_{\text {SW }}$	40	80	125	kHz	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Shutdown Input Logic High	V_{IH}	1.4	-	-	V	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {MIN }}$ to $\mathrm{V}_{\text {MAX }}$
Shutdown Input Logic Low	$\mathrm{V}_{\text {IL }}$	-	-	0.4	V	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {MIN }}$ to $\mathrm{V}_{\text {MAX }}$
Power Efficiency	$\mathrm{P}_{\text {EFF }}$	86	94	-	\%	$\mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA}$
Voltage Conversion Efficiency	$\mathrm{V}_{\text {EFF }}$	99	99.96	-	\%	$\mathrm{R}_{\text {LOAD }}=\infty$
Output Resistance (Note 2)	$\mathrm{R}_{\text {OUT }}$	-	12	$\overline{25}$	Ω	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=20 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$

Note 1: Switching frequency is one-half internal oscillator frequency.
2: Capacitor contribution is approximately 26% of the output impedance [ESR = 1 / switching frequency x capacitance].

TC1240/TC1240A

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, typical values apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

FIGURE 2-1: Supply Current vs. Supply Voltage (No Load).

FIGURE 2-2:
Output Source Resistance vs. Supply Voltage (with $R_{\text {LOAD }}=1 \mathrm{k} \Omega$)

FIGURE 2-3: Output Voltage Drop vs. Load Current.

FIGURE 2-4: Supply Current vs. Temperature (No Load).

FIGURE 2-5: Output Source Resistance vs. Temperature (with $R_{\text {LOAD }}=1 \mathrm{k} \Omega$).

FIGURE 2-6: Power Efficiency vs. Load
Current.

Note: Unless otherwise indicated, typical values apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

FIGURE 2-7: Switching Frequency vs.
Temperature.

TC1240/TC1240A

3.0 PIN DESCRIPTION

The description of the pins are listed in Table 3-1.
TABLE 3-1: PIN FUNCTION TABLE

Pin No.	Symbol	Description
1	$\mathrm{~V}_{\text {IN }}$	Power supply input
2	GND	Ground
3	C-	Commutation capacitor negative terminal
4	SHDN	Shutdown input (active high)
5	$\mathrm{~V}_{\text {OUT }}$	Doubled output voltage
6	C+	Commutation capacitor positive terminal

4.0 DETAILED DESCRIPTION

The TC1240/TC1240A charge pump converter doubles the voltage applied to the $\mathrm{V}_{\text {IN }}$ pin. Conversion consists of a two-phase operation (Figure 4-1). During the first phase, switches S_{2} and S_{4} are open and S_{1} and S_{3} are closed. During this time, C_{1} charges to the voltage on $\mathrm{V}_{\text {IN }}$ and load current is supplied from C_{2}. During the second phase, S_{2} and S_{4} are closed, while S_{1} and S_{3} are open.
During this second phase, C_{1} is level-shifted upward by $\mathrm{V}_{\text {IN }}$ volts. This connects C_{1} to the reservoir capacitor C_{2}, allowing energy to be delivered to the output as needed. The actual voltage is slightly lower than $2 \times V_{\text {IN }}$ since the four switches $\left(\mathrm{S}_{1}-\mathrm{S}_{4}\right)$ have an on-resistance and the load drains charge from reservoir capacitor C_{2}.

FIGURE 4-1: Ideal Switched Capacitor Charge Pump Doubler.

5.0 TYPICAL APPLICATIONS

5.1 Output Voltage Considerations

The TC1240/TC1240A performs voltage doubling but does not provide regulation. The output voltage will droop in a linear manner with respect to load current. The value of this equivalent output resistance is approximately 12Ω nominal at $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{IN}}=+5.0 \mathrm{~V}$ for the TC1240A and 17Ω nominal at $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IN }}=+2.8 \mathrm{~V}$ for the TC1240. $\mathrm{V}_{\text {OUT }}$ is approximately +10.0 V at light loads for the TC1240A and +5.6 V for the TC1240, and droops according to the equation below:

EQUATION

$$
\begin{gathered}
V_{\text {DROOP }}=I_{O U T} \times R_{\text {OUT }} \\
V_{O U T}=2 \times V_{I N}-V_{\text {DROOP }}
\end{gathered}
$$

5.2 Charge Pump Efficiency

The overall power efficiency of the charge pump is affected by four factors:

1. Losses from power consumed by the internal oscillator, switch drive, etc. (which vary with input voltage, temperature and oscillator frequency).
2. $I^{2} R$ losses due to the on-resistance of the MOSFET switches on-board the charge pump.
3. Charge pump capacitor losses due to effective series resistance (ESR).
4. Losses that occur during charge transfer (from commutation capacitor to the output capacitor) when a voltage difference between the two capacitors exist.
Most of the conversion losses are due to factors (2) and (3) above. These losses are given by Equation 5-1.

EQUATION 5-1:

a) $P_{\text {LOSS(} 2,3)}=I_{O U T}^{2} \times R_{\text {OUT }}$
b) $R_{\text {OUT }}=\left[\frac{1}{F_{S W}\left(C_{1}\right)}\right]+8 R_{\text {SWITCH }}+4 E S R_{C 1}+E S R_{C 2}$

TC1240/TC1240A

The switching frequency in Equation $5-1 \mathrm{~b}$ is defined as one-half the oscillator frequency (i.e., $\mathrm{F}_{\mathrm{SW}}=\mathrm{F}_{\mathrm{OSC}} / 2$). The $1 /\left(F_{S W}\right)\left(C_{1}\right)$ term in Equation $5-1 b$ is the effective output resistance of an ideal switched capacitor circuit (Figure 5-1 and Figure 5-2).

The output voltage ripple is given by Equation 5-2.
EQUATION 5-2:

$$
V_{R I P P L E}=\frac{I_{O U T}}{2\left(F_{S W}\right)\left(C_{2}\right)}+2\left(I_{O U T}\right)\left(E S R_{C 2}\right)
$$

FIGURE 5-1: Ideal Switched Capacitor Model.

FIGURE 5-2: Equivalent Output
Resistance.

5.3 Capacitor Selection

In order to maintain the lowest output resistance and output ripple voltage, it is recommended that low ESR capacitors be used. Additionally, larger values of C_{1} will lower the output resistance and larger values of C_{2} will reduce output ripple (see Equation 5-1b).
Table 5-1 shows various values of C_{1} and the corresponding output resistance values @ $+25^{\circ} \mathrm{C}$. It assumes a $0.1 \Omega \mathrm{ESR}_{\mathrm{C} 1}$ and $0.9 \Omega \mathrm{R}_{\mathrm{Sw}}$. Table 5-2 shows the output voltage ripple for various values of C_{2}. The $\mathrm{V}_{\text {RIPPLE }}$ values assume 5 mA output load current and $0.1 \Omega \mathrm{ESR}_{\mathrm{C} 2}$.

TABLE 5-1: OUTPUT RESISTANCE
VS. $C_{1}(E S R=0.1 \Omega)$

$\mathbf{C}_{\mathbf{1}}(\boldsymbol{\mu F})$	$\mathbf{T C 1 2 4 0}$ $\mathbf{R}_{\mathbf{O U T}}(\Omega)$	$\mathbf{T C 1 2 4 0 A}$ $\mathbf{R}_{\mathbf{O U T}}(\Omega)$
0.47	47	35
1	28.5	20.5
2.2	19.5	14
3.3	17	12
4.7	15.5	10.5
10	13.6	9.3
47	12.5	8.3
100	12.2	8.1

TABLE 5-2: OUTPUT VOLTAGE RIPPLE VS. $C_{2}(E S R=0.1 \Omega)$
lout 5 mA

$\mathbf{C}_{\mathbf{1}}(\boldsymbol{\mu F})$	TC1240/TC1240A $\mathbf{V}_{\text {RIPPLE }}(\mathbf{m V})$
0.47	142
1	67
2.2	30
3.3	20
4.7	14
10	6.7
47	2.5
100	1.6

5.4 Input Supply Bypassing

The V_{IN} input should be capacitively bypassed to reduce AC impedance and minimize noise effects due to the switching internal to the device. The recommended capacitor should be a large value (at least equal to C_{1}) connected from the input to GND.

5.5 Shutdown Input

The TC1240 and TC1240A are disabled when SHDN is high, and enabled when SHDN is low. This input cannot be allowed to float.

FIGURE 5-3: Test Circuit.

5.6 Voltage Doubler

The most common application for charge pump devices is the doubler (Figure 5-3). This application uses two external capacitors $-\mathrm{C}_{1}$ and C_{2} (plus a power supply bypass capacitor, if necessary). The output is equal to $2 \times V_{\text {IN }}$ minus any voltage drops due to loading. Refer to Table 5-1 and Table 5-2 for capacitor selection.

5.7 Cascading Devices

Two or more TC1240/TC1240As can be cascaded to increase output voltage (Figure 5-4). If the output is lightly loaded, it will be close to $\left((\mathrm{n}+1) \times \mathrm{V}_{\mathrm{IN}}\right)$, but will droop at least by $R_{\text {Out }}$ of the first device multiplied by the I_{Q} of the second. It can be seen that the output resistance rises rapidly for multiple cascaded devices. For the case of the two-stage 'tripler', output resistance can be approximated as $\mathrm{R}_{\text {OUT }}=2 \times \mathrm{R}_{\text {OUT1 }}+\mathrm{R}_{\text {OUT2 }}$, where $\mathrm{R}_{\text {OUT1 }}$ is the output resistance of the first stage and $R_{\text {OUT2 }}$ is the output resistance of the second stage.

5.8 Paralleling Devices

To reduce the value of $\mathrm{R}_{\text {OUT }}$, multiple TC1240/ TC1240As can be connected in parallel (Figure 5-5). The output resistance will be reduced by a factor of N, where N is the number of TC1240/TC1240As. Each device will require its own pump capacitor (C1x), but all devices may share one reservoir capacitor (C2). However, to preserve ripple performance, the value of C2 should be scaled according to the number of paralled TC1240/TC1240As, respectively.

5.9 Layout Considerations

As with any switching power supply circuit good layout practice is recommended. Mount components as close together as possible to minimize stray inductance and capacitance. Also use a large ground plane to minimize noise leakage into other circuitry.

FIGURE 5-4: Cascading Multiple Devices To Increase Output Voltage.

FIGURE 5-5: \quad Paralleling Multiple Devices To Reduce Output Resistance.

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Device	Code
TC1240	DN
TC1240A	EN

ex: 1240AECH =(E) $\mathbb{N} \bigcirc \bigcirc$
(3) represents year and 2-month code
(4) represents production lot ID code

TC1240/TC1240A

6-Lead Plastic Small Outline Transistor (CH) (SOT-23)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS		
Dimension Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		6			6	
Pitch	p		.038			0.95	
Outside lead pitch (basic)	p 1		.075			1.90	
Overall Height	A	.035	.046	.057	0.90	1.18	1.45
Molded Package Thickness	A 2	.035	.043	.051	0.90	1.10	1.30
Standoff	A 1	.000	.003	.006	0.00	0.08	0.15
Overall Width	E	.102	.110	.118	2.60	2.80	3.00
Molded Package Width	E 1	.059	.064	.069	1.50	1.63	1.75
Overall Length	D	.110	.116	.122	2.80	2.95	3.10
Foot Length	L	.014	.018	.022	0.35	0.45	0.55
Foot Angle	ϕ	0	5	10	0	5	10
Lead Thickness	C	.004	.006	.008	0.09	0.15	0.20
Lead Width	B	.014	.017	.020	0.35	0.43	0.50
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10
*Controlling Parameter							

*Controlling Parameter

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005 " 0.127 mm) per side.

JEITA (formerly EIAJ) equivalent: SC-74A
Drawing No. C04-120

TC1240/TC1240A

7.0 REVISION HISTORY

Revision D (December 2012)
Added a note to each package outline drawing.

TC1240/TC1240A

NOTES:

PRODUCT IDENTIFICATION SYSTEM

Sales and Support

```
Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1. Your local Microchip sales office
2. The Microchip Worldwide Site (www.microchip.com)
Please specify which device, revision of silicon and Data Sheet (include Literature \#) you are using.
Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
```


TC1240/TC1240A

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KeeLoq, KeeLoq logo, MPLAB, PIC, PICmicro, PICSTART, PIC ${ }^{32}$ logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH \& Co. \& KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2001-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
ISBN: 9781620768846

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Microchip

Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.

Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland

Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea-Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan-Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB MIC45116-1YMP-
T1 KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUXCE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC

