3-1/2 Digit Analog-to-Digital Converter with BCD Outputs

Features

- Accuracy: $\pm 0.05 \%$ of Reading ± 1 Count
- Two Voltage Ranges: 1.999 V and 199.9 mV
- Up to 25 Conversions Per Second
- $Z_{\text {IN }}>1000 \mathrm{M}$ Ohms
- Single Positive Voltage Reference
- Auto-Polarity and Auto-Zero
- Overrange and Underrange Signals Available
- Operates in Auto-Ranging Circuits
- Uses On-Chip System Clock or External Clock
- Wide Supply Range: $\pm 4.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$

Applications

- Portable Instruments
- Digital Voltmeters
- Digital Panel Meters
- Digital Scales
- Digital Thermometers
- Remote A/D Sensing Systems

Description

The TC14433 is a low-power, high-performance, monolithic CMOS 3-1/2 digit A/D converter. The TC14433 combines both analog and digital circuits on a single IC, thus minimizing the number of external components.
This dual-slope A/D converter provides automatic polarity and zero correction with the addition of two external resistors and two capacitors. The full scale voltage range of this ratiometric IC extends from 199.9 mV to 1.999 V . The TC14433 can operate over a wide range of power supply voltages, including batteries and standard $5-\mathrm{V}$ supplies.

The TC14433A features improved performance over the industry standard TC14433. Rollover, which is the measurement of identical positive and negative signals, is specified to have the same reading within one count for the TC14433A. Power consumption of the TC14433A is typically 4 mW , approximately one-half that of the industry standard TC14433.
The TC14433/A is available in 24-Pin SOIC (TC14433 device only) and $28-$ Pin PLCC packages.

Package Type

TC14433/A

Typical Application

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings \dagger
Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$) -0.5 V to +18 V
Voltage on Any Pin:
Reference to V_{EE} -0.5 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.5\right)$
DC Current, Any Pin: $\pm 10 \mathrm{~mA}$
Power Dissipation ($\mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$):
Plastic PLCC1.0W
SOIC 940 mW
Operating Temperature Range. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
\dagger Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC14433/A ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{C}_{1}=0.1 \mu \mathrm{~F}$, (Mylar), $\mathrm{C}_{0}=0.1 \mu \mathrm{~F}$, $R_{C}=300 \mathrm{k} \Omega, \mathrm{R}_{1}=470 \mathrm{k} \Omega @ \mathrm{~V}_{\text {REF }}=2 \mathrm{~V}, \mathrm{R}_{1}=27 \mathrm{k} \Omega @ \mathrm{~V}_{\text {REF }}=200 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.									
Parameter	Symbol	Temp. $=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$			Temp. $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (except $+25^{\circ} \mathrm{C}$)				Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Units	
Analog Input									
Rollover Error (Positive) and Negative Full Scale Symmetry	SYE	-1	-	+1	-	-	-	Counts	200 mV Full Scale $V_{\text {IN }}-V_{\text {IN }}=+V_{\text {IN }}$
Linearity Output Reading (Note 1)	NL	-0.05	+0.05	+0.05	-	-	-	\%rdg	$\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$
		-1	-	+1	-	-	-	counts	$\mathrm{V}_{\text {REF }}=200 \mathrm{mV}$
Stability Output Reading (Note 2)	SOR	-	-	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	-	-		$\begin{aligned} & \text { LSD } \\ & \text { LSD } \end{aligned}$	$\begin{aligned} & V_{X}=1.99 \mathrm{~V}, \\ & V_{R E F}=2 \mathrm{~V} \\ & V_{X}=199 \mathrm{mV}, \\ & \mathrm{~V}_{\mathrm{REF}}=200 \mathrm{mV} \\ & \hline \end{aligned}$
Zero Output Reading	ZOR	-	0	0	-	-	-	LSD	$\mathrm{V}_{\mathrm{X}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2 \mathrm{~V}$
Bias Current: Analog Input Reference Input Analog Ground	IN	$-$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \pm 100 \\ & \pm 100 \\ & \pm 100 \end{aligned}$	-	-	-	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \\ & \mathrm{pA} \\ & \hline \end{aligned}$	
Common Mode Rejection	CMRR	-	65	-	-	-	-	dB	$\begin{aligned} & V_{\mathrm{X}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2 \mathrm{~V}, \\ & \mathrm{~F}_{\mathrm{OC}}=32 \mathrm{kHz} \end{aligned}$
Output Voltage (Pins 14 to 23) (Note 3)	$\mathrm{V}_{\text {OL }}$	-	$\begin{gathered} 0 \\ -5 \end{gathered}$	$\begin{gathered} 0.05 \\ -4.95 \end{gathered}$	-	-	0.05	V	$V_{S S}=0 \mathrm{~V}$, "0" Level $V_{S S}=5 \mathrm{~V}$, "0" Level
Digital									
Output Voltage (Pins 14 to 23) (Note 3)	V_{OH}	$\begin{aligned} & 4.95 \\ & 4.95 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 4.95 \\ & 4.95 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{array}{ll} \hline V_{S S}=0 V, ~ " 1 " ~ L e v e l ~ \\ V_{S S}=05, & 1 " \text { Level } \\ \hline \end{array}$
Output Current (Pins 14 to 23)	I_{OH}	$\begin{aligned} & -0.2 \\ & -0.5 \end{aligned}$	$\begin{gathered} \hline-0.36 \\ -0.9 \end{gathered}$	-	$\begin{aligned} & \hline-0.14 \\ & -0.35 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.6 \mathrm{~V}$ Source $V_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=5 \mathrm{~V}$ Source

Note 1: Accuracy - The accuracy of the meter at full scale is the accuracy of the setting of the reference voltage. Zero is recalculated during each conversion cycle. The meaningful specification is linearity. In other words, the deviation from correct reading for all inputs other than positive full scale and zero is defined as the linearity specification.
2: The LSD stability for 200 mV scale is defined as the range that the LSD will occupy 95% of the time.
3: Pin numbers refer to 24 -pin SOIC.

TC14433/A ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{C}_{1}=0.1 \mu \mathrm{~F}$, (Mylar), $\mathrm{C}_{0}=0.1 \mu \mathrm{~F}$, $\mathrm{R}_{\mathrm{C}}=300 \mathrm{k} \Omega, \mathrm{R}_{1}=470 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{REF}}=2 \mathrm{~V}, \mathrm{R}_{1}=27 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{REF}}=200 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Parameter	Symbol	Temp. $=+25^{\circ} \mathrm{C}$			Temp. $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (except $\mathbf{~ 2 5 ~}^{\circ} \mathrm{C}$)				Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Units	
Output Current (Pins 14 to 23)	${ }^{\text {OL }}$	$\begin{gathered} \hline 0.51 \\ 1.3 \end{gathered}$	$\begin{aligned} & \hline 0.88 \\ & 2.25 \end{aligned}$	-	$\begin{gathered} 0.36 \\ 0.9 \end{gathered}$	-	-	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \text { Sink } \\ & \mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OL}}=-4.5 \mathrm{~V} \text { Sink } \end{aligned}$
Clock Frequency		-	66	-	-	-	-	kHz	$\mathrm{R}_{\mathrm{C}}=300 \mathrm{k} \Omega$
Input Current -DU	I_{DU}	-	$\begin{gathered} \pm 0.00 \\ 001 \end{gathered}$	± 0.3	-	-	± 1	$\mu \mathrm{A}$	
Power									
Quiescent Current: TC14433A	I_{Q}		$\begin{aligned} & \overline{0.4} \\ & 1.4 \end{aligned}$	$\begin{aligned} & \overline{2} \\ & 4 \end{aligned}$	-	-	$\begin{aligned} & \overline{3.7} \\ & 7.4 \end{aligned}$	mA mA	$\begin{aligned} & V_{D D} \text { to } V_{E E}, I_{S S}=0 \\ & V_{D D}=5, V_{E E}=-5 \\ & V_{D D}=8, V_{E E}=-8 \\ & \hline \end{aligned}$
Quiescent Current: TC14433		-	$\begin{aligned} & \overline{0.9} \\ & 1.8 \end{aligned}$	$\begin{aligned} & \overline{2} \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	-	$\begin{aligned} & \overline{3.7} \\ & 7.4 \end{aligned}$	mA mA	$\begin{aligned} & V_{D D} \text { to } V_{E E}, I_{S S}=0 \\ & V_{D D}=5, V_{E E}=-5 \\ & V_{D D}=8, V_{E E}=-8 \end{aligned}$
Supply Rejection	PSRR	-	0.5	-	-	-	-	mV / V	$V_{D D}$ to $V_{E E}, I_{S S}=0$, $V_{\text {REF }}=2 \mathrm{~V}$, $V_{D D}=5, V_{E E}=-5$

Note 1: Accuracy - The accuracy of the meter at full scale is the accuracy of the setting of the reference voltage. Zero is recalculated during each conversion cycle. The meaningful specification is linearity. In other words, the deviation from correct reading for all inputs other than positive full scale and zero is defined as the linearity specification.
2: The LSD stability for 200 mV scale is defined as the range that the LSD will occupy 95% of the time.
3: Pin numbers refer to 24 -pin SOIC.

TEMPERATURE SPECIFICATIONS

$|$| Electrical Characteristics: Unless otherwise indicated, $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$. | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameters | Sym | Min | Typ | Max | Units | Conditions | |
| Temperature Ranges | | | | | | | |
| Operating Temperature Range | T_{A} | -40 | - | +85 | ${ }^{\circ} \mathrm{C}$ | Note | |
| Storage Temperature Range | T_{A} | -65 | - | +150 | ${ }^{\circ} \mathrm{C}$ | | |
| Thermal Package Resistances | | | | | | | |
| Thermal Resistance, 24LD CERDIP | θ_{JA} | - | N / A | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | | |
| Thermal Resistance, 24LD SOIC Wide | θ_{JA} | - | 70 | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | | |
| Thermal Resistance, 28LD PLCC | θ_{JA} | - | 61.2 | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | | |

Note: The internal junction temperature (T_{J}) must not exceed the absolute maximum specification of $+150^{\circ} \mathrm{C}$.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{C}_{1}=0.1 \mu \mathrm{~F}$, (Mylar), $\mathrm{C}_{0}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{C}}=300 \mathrm{k} \Omega, \mathrm{R}_{1}=470 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{REF}}=2 \mathrm{~V}$, $\mathrm{R}_{1}=27 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{REF}}=200 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

FIGURE 2-1: Rollover Error vs. Power Supply Skew.

FIGURE 2-2: \quad Sink Current at $V_{D D}=5 \mathrm{~V}$.

FIGURE 2-3: Clock Frequency vs.
Resistor (R_{C}).

FIGURE 2-4: Quiescent Power Supply Current vs. Ambient Temperature.

FIGURE 2-5: Sink Current at VDD $=5 \mathrm{~V}$.

FIGURE 2-6: \% Change to Clock
Frequency vs. Ambient Temperature.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin No. 24-Pin SOIC	Pin No. 28-Pin PLCC	Symbol	Description
1	2	$\mathrm{V}_{\text {AG }}$	This is the analog ground. It has a high input impedance. The pin determines the reference level for the unknown input voltage $\left(\mathrm{V}_{\mathrm{X}}\right)$ and the reference voltage ($\mathrm{V}_{\mathrm{REF}}$).
2	3	$\mathrm{V}_{\text {REF }}$	Reference voltage - Full scale output is equal to the voltage applied to $\mathrm{V}_{\text {REF }}$. Therefore, full scale voltage of 1.999 V requires 2 V reference and 199.9-mV full scale requires a $200-\mathrm{mV}$ reference. $\mathrm{V}_{\text {REF }}$ functions as system reset also. When switched to V_{EE}, the system is reset to the beginning of the conversion cycle.
3	4	V_{X}	The unknown input voltage $\left(V_{X}\right)$ is measured as a ratio of the reference voltage ($\mathrm{V}_{\mathrm{REF}}$) in a ratiometric A / D conversion.
4	5	R_{1}	This pin is for external components used for the integration function in the dual slope conversion. Typical values are $0.1 \mu \mathrm{~F}$ (Mylar) capacitor for C_{1}.
5	6	$\mathrm{R}_{1} / \mathrm{C}_{1}$	$\mathrm{R}_{1}=470 \mathrm{k} \Omega$ (resistor) for 2 V full scale.
6	7	C_{1}	$\mathrm{R}_{1}=27 \mathrm{k} \Omega$ (resistor) for 200-mV full scale. Clock frequency of 66 kHz gives 250-ms conversion time.
7	9	CO_{1}	These pins are used for connecting the offset correction capacitor. The recommended value is $0.1 \mu \mathrm{~F}$.
8	10	CO_{2}	These pins are used for connecting the offset correction capacitor. The recommended value is $0.1 \mu \mathrm{~F}$.
9	11	DU	Display update input pin. When DU is connected to the EOC output, every conversion is displayed. New data will be strobed into the output latches during the conversion cycle if a positive edge is received on DU, prior to the ramp down cycle. When this pin is driven from an external source, the voltage should be referenced to V_{SS}.
10	12	CLK_{1}	Clock input pins. The TC14433 has its own oscillator system clock. Connecting a single resistor between CLK_{1} and CLK_{0} sets the clock frequency.
11	13	CLK_{0}	A crystal or OC circuit may be inserted in lieu of a resistor for improved CLK_{1}. The clock input can be driven from an external clock source, which needs to only have standard CMOS output drive. This pin is referenced to V_{EE} for external clock inputs. A 300-k resistor yields a clock frequency of about 66 kHz. See Section 2.0 "Typical Performance Curves". (Also see Figure 5-3 for alternate circuits.)
12	14	V_{EE}	Negative power current. Connection pin for the most negative supply. Please note the current for the output drive circuit is returned through V_{SS}. Typical supply current is 0.8 mA .
13	16	V_{SS}	Negative power supply for output circuitry. This pin sets the low voltage level for the output pins (BCD, Digit Selects, EOC, and OR). When connected to analog ground, the output voltage is from analog ground to $V_{D D}$. If connected to $V_{E E}$, the output swing is from $V_{E E}$ to $V_{D D}$. The recommended operating range for V_{SS} is between the $\mathrm{V}_{\mathrm{DD}}-3$ volts and V_{EE}.
14	17	EOC	End of conversion output generates a pulse at the end of each conversion cycle. This generated pulse width is equal to one half the period of the system clock.
15	18	OR	Overrange pin. Normally this pin is set high. When V_{X} exceeds $V_{\text {REF }}$, the OR is low.

TABLE 3-1: PIN FUNCTION TABLE (CONTINUED)

Pin No. 24-Pin SOIC	Pin No. 28-Pin PLCC	Symbol	Description
16	19	DS 4	Digit select pin. The digit select output goes high when the respective digit is selected. The MSD (1/2-digit) turns on immediately after an EOC pulse.
17	20	DS_{3}	The remaining digits turn on in sequence from MSD to LSD.
18	21	DS 2	To ensure that the BCD data has settled, an inter-digit blanking time of two clock periods is included.
19	23	DS 1	Clock frequency divided by 80 equals multiplex rate. For example, a system clock of 60 kHz gives a multiplex rate of 0.8 kHz .
20	24	Q_{0}	See Figure 5-4 for digit select timing diagram.
21	25	Q_{1}	BCD data output pin. Multiplexed BCD outputs contain three full digits of information during digit select $\mathrm{DS}_{2}, \mathrm{DS}_{3}$, and DS_{4}.
22	26	Q_{2}	During DS_{1}, the $1 / 2$ digit, overrange, underrange, and polarity information are available.
23	27	Q_{3}	Refer to the Truth Table 5-1.
24	28	V_{DD}	Positive power supply. This is the most positive power supply pin.
-	1	NC	Not used.
-	8	NC	Not used.
-	15	NC	Not used.
-	22	NC	Not used.

4.0 DETAILED DESCRIPTION

The TC14433 CMOS IC becomes a modified dualslope A / D with a minimum of external components. This IC has the customary CMOS digital logic circuitry, as well as CMOS analog circuitry. It provides the user with digital functions (such as counters, latches, and multiplexers) and analog functions (such as operational amplifiers and comparators) on a single chip. Refer to the functional block diagram in Figure 4-3.
Features of the TC14433/A include auto-zero, high input impedances, and auto-polarity. Low power consumption and a wide range of power supply voltages are also advantages of this CMOS device. The system's auto-zero function compensates for the offset voltage of the internal amplifiers and comparators. In this "ratiometric system," the output reading is the ratio of the unknown voltage to the reference voltage, where a ratio of $1: 1$ is equal to the maximum count of 1999. It takes approximately 16,000 clock periods to complete one conversion cycle. Each conversion cycle may be divided into six segments. Figure 4-1 shows the conversion cycle in six segments for both positive and negative inputs.

FIGURE 4-1:

Integrator Waveforms at Pin 6.

Segment 1 - The offset capacitor $\left(\mathrm{C}_{\mathrm{O}}\right)$, which compensates for the input offset voltages of the buffer and integrator amplifiers, is charged during this period. However, the integrator capacitor is shorted. This segment requires 4,000 clock periods.
Segment 2 - During this segment, the integrator output decreases to the comparator threshold voltage. At this time, a number of counts equivalent to the input offset voltage of the comparator is stored in the offset latches for later use in the auto-zero process. The time for this segment is variable and less than 800 clock periods.
Segment 3 - This segment of the conversion cycle is the same as Segment 1.
Segment 4 - Segment 4 is an up-going ramp cycle with unknown input voltage (V_{X} as the input to the integrator). Figure 4-2 shows the equivalent configuration of the analog section of the TC14433. The actual configuration of the analog section is dependent upon the polarity of the input voltage during the previous conversion cycle.

FIGURE 4-2: Equivalent Circuit Diagrams of the Analog Section During Segment 4 of the Timing Cycle.

Segment 5 - This segment is a down-going ramp period with the reference voltage as the input to the integrator. Segment 5 of the conversion cycle has a time equal to the number of counts stored in the offset storage latches during Segment 2. As a result, the system zeros automatically.
Segment 6 - This is an extension of Segment 5. The time period for this portion is 4,000 clock periods. The results of the A/D conversion cycle are determined in this portion of the conversion cycle.

FIGURE 4-3: Functional Block Diagram.

5.0 TYPICAL APPLICATIONS

The typical application circuit is an example of a 3-1/2 digit voltmeter using the TC14433 with common-anode displays. This system requires a $2.5-\mathrm{V}$ reference. Full scale may be adjusted to 1.999 V or 199.9 mV . Input overrange is indicated by flashing a display. This display uses LEDs with common anode digit lines. Power supply for this system is shown as a dual $\pm 5 \mathrm{~V}$ supply; however, the TC14433 will operate over a wide voltage range.
The circuit in Figure $5-1$ shows a $3-1 / 2$ digit LCD voltmeter. The 14024B provides the low frequency square wave signal drive to the LCD backplane. Dual power supplies are shown here; however, one supply may be used when $V_{S S}$ is connected to $V_{E E}$. In this case, V_{AG} must be at least 2.8 V above V_{EE}.
When only segments b and c of the decoder are connected to the $1 / 2$ digit of the display, $4,0,7$, and 3 appear as 1.
The overrange indication ($Q_{3}=0$ and $Q_{0}=1$) occurs when the count is greater than 1999; (for example, 1.999 V for a reference of 2 V) The underrange indication, useful for auto-ranging circuits, occurs when the count is less than 180; (for example, 0.180 V for a reference of 2 V).

Note: If the most significant digit is connected to a display other than a " 1 " only, such as a full digit display, segments other than b and c must be disconnected. The BCD to 7 -segment decoder must blank on BCD inputs 1010 to 1111 (see Table 5-1).

TABLE 5-1: TRUTH TABLE

Coded Condition of MSD	$\begin{gathered} \mathbf{Q} \\ 3 \end{gathered}$	$\begin{aligned} & \mathbf{Q} \\ & 2 \end{aligned}$	$\begin{gathered} \mathbf{Q} \\ 1 \end{gathered}$	$\begin{aligned} & \mathbf{Q} \\ & 0 \end{aligned}$	BDC to 7-Segment Decoding	
+0	1	1	1	0	Blank Blank Blank Blank	
-0	1	0	1	0		
+0 UR	1	1	1	1		
-0 UR	1	0	1	1		
+1	0	1	0	0	$\begin{aligned} & 4-1 \\ & 0-1 \\ & 7-1 \\ & 3-1 \end{aligned}$	Hook up only segments b and c to MSD
-1	0	0	0	0		
+1 OR	0	1	1	1		
-1 OR	0	0	1	1		

Note 1: $Q_{3}-1 / 2$ digit, low for " 1 ", high for " 0 ".
Q_{2} - Polarity: " 1 " = positive, " 0 " = negative.
Q_{0} - Out of range condition exists if $Q_{0}=1$. When used in conjunction with Q_{3}, the type of out of range condition is indicated; that is, $Q_{3}=0 \rightarrow O R$ or $Q_{3}=1 \rightarrow U R$.

Figure 5-2 is an example of a 3-1/2 digit LED voltmeter with a minimum of external components (only 11 additional components). In this circuit, the 14511B provides the segment drive and the 75492 or 1413 provides the sink for digit current. Display is blanked during the overrange condition.

FIGURE 5-1: $\quad 3-1 / 2$ Digit Voltmeter with LCD Display.

FIGURE 5-2:
3-1/2 Digit LED Voltmeter with Low Component Count Using Common Cathode
Display.

FIGURE 5-3: Alternate Oscillator Circuits.

FIGURE 5-4: Digit Select Timing Diagram.

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

24-Lead SOIC (7.50 mm)

28-Lead PLCC

Example

Example

Legend:	XX...X	Customer-specific information
Y	Year code (last digit of calendar year)	
YY	Year code (last 2 digits of calendar year)	
WW	Week code (week of January 1 is week '01')	
NNN	Alphanumeric traceability code	
e3	Pb-free JEDEC designator for Matte Tin (Sn) 	This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

24-Lead Plastic Small Outline (OG) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-025C Sheet 1 of 2

24-Lead Plastic Small Outline (OG) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	24		
Pitch	e	1.27 BSC		
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	15.40 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	\bigcirc	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	c	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
5. Datums A \& B to be determined at Datum H.

24-Lead Plastic Small Outline (OG) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	C		9.40	
Contact Pad Width (X24)	X			0.60
Contact Pad Length (X24)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2025A

28-Lead Plastic Leaded Chip Carrier (LI) - Square [PLCC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	e	. 050		
Overall Height	A	. 165	. 172	. 180
Contact Height	A1	. 090	. 105	. 120
Molded Package to Contact	A2	. 062	-	. 083
Standoff §	A3	. 020	-	-
Corner Chamfer	CH1	. 042	-	. 048
Chamfers	CH2	-	-	. 020
Side Chamfer	CH3	. 042	-	. 056
Overall Width	E	. 485	. 490	. 495
Overall Length	D	. 485	. 490	. 495
Molded Package Width	E1	. 450	. 453	. 456
Molded Package Length	D1	. 450	. 453	456
Footprint Width	E2	. 382	. 410	. 438
Footprint Length	D2	. 382	. 410	. 438
Lead Thickness	c	. 0075	-	. 0125
Upper Lead Width	b1	. 026	-	. 032
Lower Lead Width	b	. 013	-	. 021

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010 " per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

28-Lead Plastic Leaded Chip Carrier (LI) - Square [PLCC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	INCHES		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	.050 BSC		
Contact Pad Spacing	C 1		.429	
Contact Pad Spacing	C 2		.429	
Contact Pad Width (X28)	X 1			.026
Contact Pad Length (X28)	Y 1			.094

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2026A

TC14433/A

NOTES:

APPENDIX A: REVISION HISTORY

Revision F (April 2018)

The following is the list of modifications:

1. Removed all 24-pin PDIP references as all PDIP packages have reached the end of life.
2. Updated existing device examples in the Product Identification System section.
3. Made minor text changes throughout.

Revision E (August 2016)

The following is the list of modifications:

1. Updated the Temperature Range in the Product Identification System page.

Revision D (July 2008)

The following is the list of modifications:

1. Changed Operating Temperature in Absolute Maximum Ratings to $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2. Added Packaging Marking information.
3. Added Package Outline Drawings.
4. Added Appendix A: "Revision History"
5. Added "Product Identification System".

Revision C (January 2006)

- Undocumented changes.

Revision B (May 2002)

- Undocumented changes.

Revision A (March 2001)

- Original release of this document.

TC14433/A

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

TC14433/A

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC ${ }^{\circledR}$ MCUs and dsPIC ${ }^{\circledR}$ DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, InterChip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2001-2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2853-4

Microchip

Worldwide Sales and Service

AMERICAS
 Corporate Office 2355 West Chandler Blvd.
 Chandler, AZ 85224-6199
 Tel: 480-792-7200
 Fax: 480-792-7277
 Technical Support:
 http://www.microchip.com/ support
 Web Address:
 www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China-Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-3770
Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Display Drivers category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
MAP9000QNRH AS3693B-ZTQT SCT2027CSSG ME2206AM6G WS3130S8P WS3132S7P WS3136D7P WS3256D8P WS3418AD7P WS9012S8P WS9620BDP FM6126QC TC7559C FM6565QB LYT3315D SCT2001ASIG SCT2024CSSG SCT2167CSSG AL8400QSE-7 PR4401 PR4403 WS2821B PR4402 RT8471GJ5 RT9284A-20GJ6E LP5562TMX TC7117ACLW DLD101Q-7 WS2818B BCR401U BCR402U SCT2004CSOG SCT2026CSOG SCT2026CSSG SCT2110CSSG SCT2932J LM3429MH PR4101A PR4404 CP2155DN10-A1 BCT3220ELA-TR AW2013DNR AW3641EDNR WD3153D-10/TR AW36404DNR AL8400SE-7 CD4511BE XD3914 MAX7219N XD7221

