N - and P-Channel Enhancement-Mode Dual MOSFET

Features

- 500 V breakdown voltage
- Independent N - and P -channels
- Electrically isolated N - and P -channels
- Low input capacitance
- Fast switching speeds
- Free from secondary breakdowns
- Low input and output leakage

Applications

- High voltage pulsers
- Amplifiers
- Buffers
- Piezoelectric transducer drivers
- General purpose line drivers

General Description

The Supertex TC1550 consists of a high voltage N-channel and P-channel MOSFET in an 8-Lead SOIC package. This is an enhancement-mode (normally-off) transistor utilizing an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

Device	Package Option	$\mathrm{BV}_{\mathrm{Dss}} / \mathrm{BV}_{\text {DGs }}$		$R_{\text {DS(ON) }}$ (Max)	
	8-Lead SOIC $4.90 \times 3.90 \mathrm{~mm}$ body 1.75 mm height (max) 1.27 mm pitch	N-Channel (V)	P-Channel (V)	N-Channel ($\Omega)$	P-Channel (Ω)
TC1550	TC1550TG-G	500	-500	60	125

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	$\mathrm{BV}_{\text {DSS }}$
Drain-to-gate voltage	$\mathrm{BV}_{\text {DGS }}$
Gate-to-source voltage	$\pm 20 \mathrm{~V}$
Operating and storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering temperature	$300^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

8-Lead SOIC (TG) (top view)

Product Marking

YY = Year Sealed WW = Week Sealed L = Lot Number = "Green" Packaging
8-Lead SOIC (TG)

* Distance of 1.6 mm from case for 10 seconds.

N-Channel Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$B V_{\text {DSs }}$	Drain-to-source breakdown voltage	500	-	-	V	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$
$V_{\text {GS(th) }}$	Gate threshold voltage	2.0	-	4.0	V	$V_{G S}=V_{D S}, I_{D}=1.0 \mathrm{~mA}$
$\Delta V_{\text {GS(th) }}$	Change in $\mathrm{V}_{\text {GS(th) }}$ with temperature	-	-3.8	-5.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$V_{G S}=V_{D S}, I_{D}=1.0 \mathrm{~mA}$
$\mathrm{I}_{\text {GSS }}$	Gate body leakage current	-	-	100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
$\mathrm{I}_{\text {Dss }}$	Zero gate voltage drain current	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=$ Max Rating
		-	-	1.0	mA	$\begin{aligned} & V_{D S}=0.8 \mathrm{Max} \text { Rating, } \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$I_{\text {D(ON) }}$	On-state drain current	-	100	-	mA	$\mathrm{V}_{G S}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}$
		150	350	-		$V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=25 \mathrm{~V}$
$\mathrm{R}_{\text {DS(ON) }}$	Static drain-to-source on-state resistance	-	45	-	Ω	$\mathrm{V}_{G S}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$
		-	40	60		$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$
$\Delta \mathrm{R}_{\text {DS(ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\text { ON })}$ with temperature	-	1.0	1.7	\%/ ${ }^{\circ} \mathrm{C}$	$V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$
G_{FS}	Forward transconductance	50	100	-	mmho	$V_{D S}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	45	55	pF	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, \\ & V_{\mathrm{DS}}=25 \mathrm{~V}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	8.0	10		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	2.0	5.0		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-on delay time	-	-	10	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$
t_{r}	Rise time	-	-	15		
$\mathrm{t}_{\text {d(OFF) }}$	Turn-off delay time	-	-	10		
t_{f}	Fall time	-	-	10		
$\mathrm{V}_{\text {sD }}$	Diode forward voltage drop	-	0.8	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=500 \mathrm{~mA}$
t_{rr}	Reverse recovery time	-	300	-	ns	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=500 \mathrm{~mA}$

Notes:

1. All DC parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulsed test: 300μ s pulse at 2% duty cycle.)
2. All AC parameters sample tested.

N-Channel Switching Waveforms and Test Circuit

P-Channel Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$B V_{\text {DSS }}$	Drain-to-source breakdown voltage	-500	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.0 \mathrm{~mA}$
$\mathrm{V}_{\text {GS(th) }}$	Gate threshold voltage	-2.0	-	-4.5	V	$V_{G S}=V_{D S}, I_{D}=-1.0 \mathrm{~mA}$
$\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Change in $\mathrm{V}_{\text {GS(th) }}$ with temperature	-	3.5	6.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$V_{G S}=V_{D S}, I_{D}=-1.0 \mathrm{~mA}$
$\mathrm{l}_{\text {GSs }}$	Gate body leakage current	-	-	100	nA	$\mathrm{V}_{\text {GS }}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {Dss }}$	Zero gate voltage drain current	-	-	-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=$ Max Rating
		-	-	-1.0	mA	$\begin{aligned} & V_{\text {DS }}=0.8 \mathrm{Max} \text { Rating, } \\ & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{DON})}$	On-state drain current	-	-90	-	mA	$\mathrm{V}_{\text {GS }}=-5.0 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=-25 \mathrm{~V}$
		-100	-240	-		$V_{G S}=-10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=-25 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Static drain-to-source on-state resistance	-	85	-	Ω	$\mathrm{V}_{\text {GS }}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-5.0 \mathrm{~mA}$
		-	80	125		$V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}$
$\Delta \mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with temperature	-	0.85	-	\%/ ${ }^{\circ} \mathrm{C}$	$V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}$
$\mathrm{G}_{\text {FS }}$	Forward transconductance	25	40	-	mmho	$V_{D S}=-25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	40	70	pF	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, \\ & V_{\text {DS }}=-25 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	10	20		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	3.0	10		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-on delay time	-	5.0	10	ns	$\begin{aligned} & V_{D D}=-25 \mathrm{~V}, \\ & I_{D}=-100 \mathrm{~mA}, \\ & R_{G E N}=25 \Omega \end{aligned}$
t_{r}	Rise time	-	8.0	10		
$\mathrm{t}_{\text {d(OFF) }}$	Turn-off delay time	-	8.0	15		
t_{f}	Fall time	-	5.0	16		
$\mathrm{V}_{\text {SD }}$	Diode forward voltage drop	-	-0.8	-1.5	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=-100 \mathrm{~mA}$
t_{r}	Reverse recovery time	-	200	-	ns	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=-100 \mathrm{~mA}$

Notes:

1. All DC parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulsed test: 300μ s pulse at 2% duty cycle.)
2. All AC parameters sample tested.

P-Channel Switching Waveforms and Test Circuit

Typical Application Circuit

Block Diagram

8-Lead SOIC (Narrow Body) Package Outline (TG) 4.90x3.90mm body, 1.75 mm height (max), 1.27 mm pitch

Note:

1. This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 Identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	E	E1	e	h	L	L1	L2	0	01
$\begin{aligned} & \text { Dimension } \\ & (\mathrm{mm}) \end{aligned}$	MIN	1.35*	0.10	1.25	0.31	4.80*	5.80*	3.80*	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.25	0.40	$\begin{aligned} & 1.04 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	-	-	4.90	6.00	3.90		-	-			-	-
	MAX	1.75	0.25	1.65*	0.51	5.00*	6.20*	4.00*		0.50	1.27			8°	15°

JEDEC Registration MS-012, Variation AA, Issue E, Sept. 2005.

* This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.

Drawings are not to scale.
Supertex Doc. \#: DSPD-8SOLGTG, Version G090808.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7

[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

