MICROCHIP TC4426M/TC4427M/TC4428M

1.5A Dual High-Speed Power MOSFET Drivers

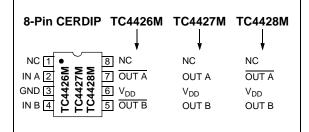
Features

- High Peak Output Current 1.5A
- Wide Input Supply Voltage Operating Range:
 4.5V to 18V
- High Capacitive Load Drive Capability 1000 pF in 25 ns (typ.)
- Short Delay Times 40 ns (typ.)
- Matched Rise and Fall Times
- Low Supply Current:
 - With Logic '1' Input 4 mA
- With Logic '0' Input 400 μA
- Low Output Impedance 7Ω
- Latch-Up Protected: Will Withstand 0.5A Reverse Current
- Input: Will Withstand Negative Inputs Up to 5V
- ESD Protected 4 kV
- Pin-Compatible with the TC426M/TC427M/ TC428M, TC4426AM/TC4427AM/TC4428AM Devices
- Wide Operating Temperature Range:
- -55°C to +125°C
- See TC4426/TC4427/TC4428 data sheet (DS21422) for additional temperature range and packaging offerings

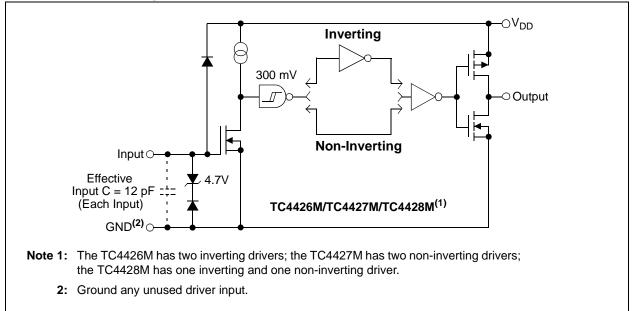
Applications

- Switch-mode Power Supplies
- Line Drivers
- Pulse Transformer Drive

General Description


The TC4426M/TC4427M/TC4428M are improved versions of the earlier TC426M/TC427M/TC428M family of MOSFET drivers. The TC4426M/TC4427M/ TC4428M devices have matched rise and fall times when charging and discharging the gate of a MOSFET.

These devices are highly latch-up resistant under any conditions within their power and voltage ratings. They are not subject to damage when up to 5V of noise spiking (of either polarity) occurs on the ground pin. They can accept, without damage or logic upset, up to 500 mA of reverse current (of either polarity) being forced back into their outputs. All terminals are fully protected against Electrostatic Discharge (ESD) up to 4 kV.


The TC4426M/TC4427M/TC4428M MOSFET drivers can easily charge/discharge 1000 pF gate capacitances in under 30 ns and provide low enough impedances in both the on and off states to ensure the MOSFET's intended state will not be affected, even by large transients.

The TC4426AM/TC4427AM/TC4428AM family of devices are also compatible drivers. The TC4426AM/ TC4427AM/TC4428AM devices have matched leading and falling edge input-to-output delay times, in addition to the matched rise and fall times of the TC4426M/TC4427M/TC4428M devices.

Package Types

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage+22V
Input Voltage, IN A or IN B $(V_{DD} + 0.3V)$ to $(GND - 5V)$
Storage Temperature Range65°C to +150°C
Maximum Junction Temperature+150°C

† Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Parameters	Sym	Min	Тур	Max	Units	Conditions
Input						I
Logic '1', High Input Voltage	VIH	2.4		—	V	
Logic '0', Low Input Voltage	V _{IL}	—		0.8	V	
Input Current	I _{IN}	-1.0		+1.0	μA	$0V \le V_{IN} \le V_{DD}$
Output					•	•
High Output Voltage	V _{OH}	V _{DD} - 0.025	_	_	V	DC TEST
Low Output Voltage	V _{OL}	—		0.025	V	DC TEST
Output Resistance	R _O	—	7	10	Ω	I _{OUT} = 10 mA, V _{DD} = 18V
Peak Output Current	I _{PK}	—	1.5	—	Α	V _{DD} = 18V
Latch-Up Protection	I _{REV}	—	>0.5	—	Α	Duty cycle \leq 2%, t \leq 300 µs
Withstand Reverse Current						V _{DD} = 18V
Switching Time (Note 1)						
Rise Time	t _R	—	19	30	ns	Figure 4-1
Fall Time	t _F	—	25	30	ns	Figure 4-1
Delay Time	t _{D1}	—	20	30	ns	Figure 4-1
Delay Time	t _{D2}	—	40	50	ns	Figure 4-1
Power Supply						
Power Supply Current	۱ _S	—	_	4.5	mA	V _{IN} = 3V (Both inputs)
		—	—	0.4		V _{IN} = 0V (Both inputs)

Note 1: Switching times ensured by design.

DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)

Parameters	Sym	Min	Тур	Max	Units	Conditions
Input						
Logic '1', High Input Voltage	VIH	2.4	_	—	V	
Logic '0', Low Input Voltage	V _{IL}	—	_	0.8	V	
Input Current	I _{IN}	-10	_	+10	μA	$0V \le V_{IN} \le V_{DD}$
Output					•	
High Output Voltage	V _{OH}	V _{DD} - 0.025			V	DC Test
Low Output Voltage	V _{OL}	—		0.025	V	DC Test
Output Resistance	R _O	—	9	12	Ω	I _{OUT} = 10 mA, V _{DD} = 18V
Peak Output Current	I _{PK}	—	1.5	—	Α	V _{DD} = 18V
Latch-Up Protection Withstand Reverse Current	I _{REV}	—	>0.5	—	A	Duty cycle $\leq 2\%$, t $\leq 300 \ \mu s$
Switching Time (Note 1)						V _{DD} = 18V
Rise Time	t _R	_		40	ns	Figure 4-1
Fall Time	t _F		_	40	ns	Figure 4-1
Delay Time	t _{D1}		_	40	ns	Figure 4-1
Delay Time	t _{D2}		_	60	ns	Figure 4-1
Power Supply	' D2			00		
Power Supply Current	۱ _S			8.0	mA	V _{IN} = 3V (Both inputs)
Tower Supply Suitent	'S		_	0.6		$V_{IN} = 0V$ (Both inputs)

Note 1: Switching times ensured by design.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all parameters apply with $4.5V \le V_{DD} \le 18V$.							
Parameters	Sym	Min	Тур	Max	Units	Conditions	
Temperature Ranges							
Specified Temperature Range (M)	T _A	-55	—	+125	°C		
Maximum Junction Temperature	TJ	_	—	+150	°C		
Storage Temperature Range	T _A	-65	—	+150	°C		
Package Thermal Resistances							
Thermal Resistance, 8L-CERDIP	θ_{JA}	_	150	—	°C/W		

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$ with $4.5V \leq V_{DD} \leq 18V$.

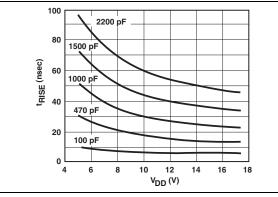


FIGURE 2-1: Rise Time vs. Supply Voltage.

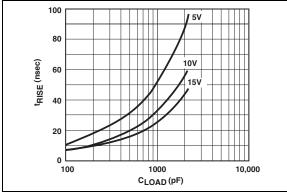


FIGURE 2-2: Rise Time vs. Capacitive Load.

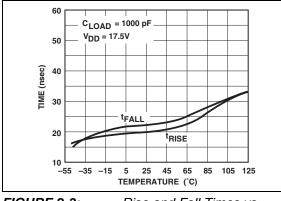


FIGURE 2-3: Temperature.

Rise and Fall Times vs.

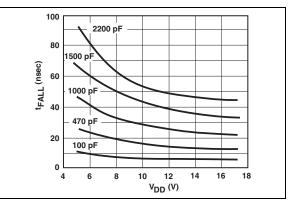


FIGURE 2-4: Fall Time vs. Supply Voltage.

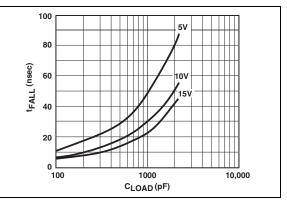


FIGURE 2-5: Fall Time vs. Capacitive Load.

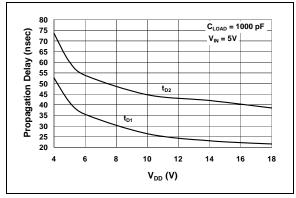


FIGURE 2-6: Supply Voltage.

Propagation Delay Time vs.

Note: Unless otherwise indicated, T_A = +25°C with 4.5V $\,\leq V_{DD} \leq$ 18V.

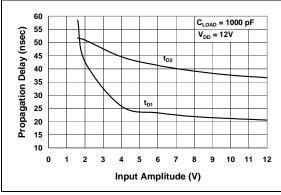


FIGURE 2-7: Propagation Delay Time vs. Input Amplitude.

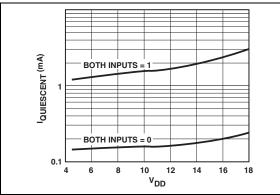


FIGURE 2-8: Supply Current vs. Supply Voltage.

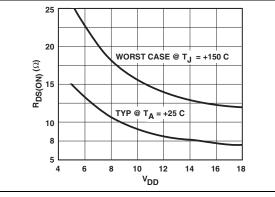


FIGURE 2-9: Supply Voltage.

Output Resistance (R_{OH}) vs.

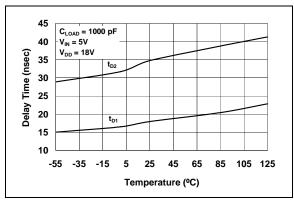
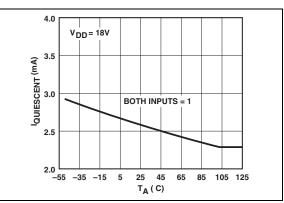
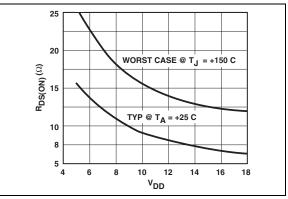
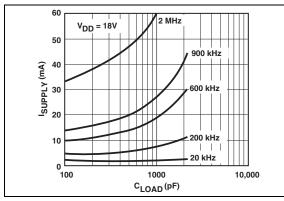
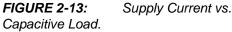


FIGURE 2-10: Propagation Delay Time vs. Temperature.


FIGURE 2-11: Supply Current vs. Temperature.

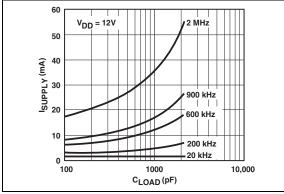


FIGURE 2-12: Output Resistance (R_{OL}) vs. Supply Voltage.

Note: Unless otherwise indicated, T_A = +25°C with 4.5V $\,\leq V_{DD} \leq$ 18V.

FIGURE 2-14: Supply Current vs. Capacitive Load.

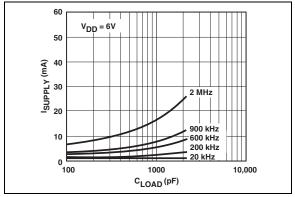


FIGURE 2-15: Capacitive Load.

Supply Current vs.

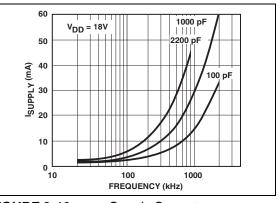
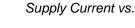



FIGURE 2-16: Frequency.

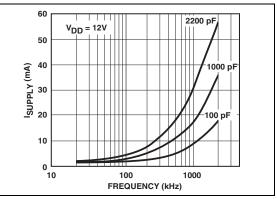


FIGURE 2-17: Supply Current vs. Frequency.

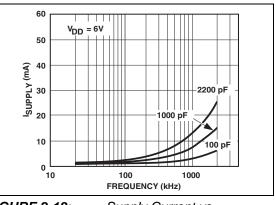
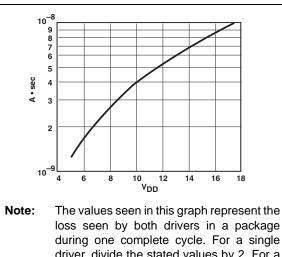



FIGURE 2-18:

Supply Current vs.

Note: Unless otherwise indicated, T_A = +25°C with 4.5V $\,\leq V_{DD} \leq$ 18V.

during one complete cycle. For a single driver, divide the stated values by 2. For a single transition of a single driver, divide the stated value by 4.

FIGURE 2-19: Crossover Energy vs. Supply Voltage.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1. FIN FUNCTION TABLE							
8-Pin CERDIP	Symbol	Description					
1	NC	No connection					
2	IN A	Input A					
3	GND	Ground					
4	IN B	Input B					
5	OUT B	Output B					
6	V _{DD}	Supply input					
7	OUT A	Output A					
8	NC	No connection					

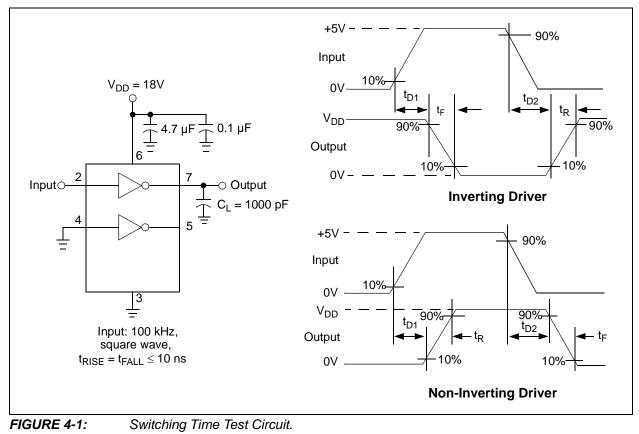
TABLE 3-1: PIN FUNCTION TABLE

3.1 Inputs A & B (IN A and IN B)

MOSFET drivers IN A & B are high-impedance, TTL/ CMOS-compatible inputs. These inputs also have 300 mV of hysteresis between the high and low thresholds that prevents output glitching even when the rise and fall time of the input signal is very slow.

3.2 Ground (GND)

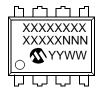
GND is the device return pin. The ground pin(s) should have a low-impedance connection to the bias supply source return. High peak currents will flow out of the ground pin(s) when the capacitive load is being discharged.


3.3 Output A & B (OUT A and OUT B)

MOSFET drivers OUT A & B are low-impedance, CMOS push-pull style outputs. The pull-down and pullup devices are of equal strength, making the rise and fall times equivalent.

3.4 Supply Input (V_{DD})

The V_{DD} input is the bias supply for the MOSFET driver and is rated for 4.5V to 18V with respect to the ground pin. The V_{DD} input should be bypassed with local ceramic capacitors. The value of these capacitors should be chosen based on the capacitive load that is being driven. A value of 1.0 μ F is suggested.

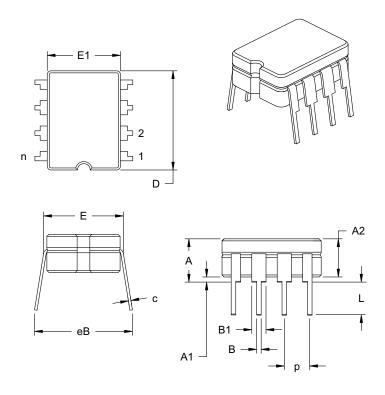

4.0 APPLICATIONS INFORMATION

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

8-Lead CERDIP (300 mil)

Example:



Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

© 2005-2013 Microchip Technology Inc.

8-Lead Ceramic Dual In-line – 300 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	nits INCHES*			N		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	A	.160	.180	.200	4.06	4.57	5.08
Standoff §	A1	.020	.030	.040	0.51	0.77	1.02
Shoulder to Shoulder Width	E	.290	.305	.320	7.37	7.75	8.13
Ceramic Pkg. Width	E1	.230	.265	.300	5.84	6.73	7.62
Overall Length	D	.370	.385	.400	9.40	9.78	10.16
Tip to Seating Plane	L	.125	.163	.200	3.18	4.13	5.08
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.055	.065	1.14	1.40	1.65
Lower Lead Width	В	.016	.018	.020	0.41	0.46	0.51
Overall Row Spacing	eB	.320	.360	.400	8.13	9.15	10.16

*Controlling Parameter

JEDEC Equivalent: MS-030

Drawing No. C04-010

APPENDIX A: REVISION HISTORY

Revision B (January 2013)

Added a note to each package outline drawing.

Revision A (February 2005)

• Original Release of this Document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO	ר	xx	Ex	amples:	
Device and Tem Range	perature	Package	a)	TC4426MJA:	1.5A Dual MOSFET driver, Inverting, -55°C to +125°C, 8LD CERDIP package.
Device and Temperature Range:	TC4426M: TC4427M: TC4428M:	1.5A Dual MOSFET Driver, Inverting, -55°C to +125°C 1.5A Dual MOSFET Driver, Non-Inverting -55°C to +125°C 1.5A Dual MOSFET Driver, Complementa	,	TC4427MJA:	1.5A Dual MOSFET driver, Non-Inverting, -55°C to +125°C, 8LD CERDIP package.
Package:		-55°C to +125°C	a)	TC4428MJA:	1.5A Dual MOSFET driver, Complementary, -55°C to +125°C, 8LD CERDIP package.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2005-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Rinted on recycled paper.

ISBN: 9781620769195

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

 89076GBEST
 00053P0231
 56956
 57.404.7355.5
 LT4936
 57.904.0755.0
 5882900001
 00600P0005
 00-9050-LRPP
 00-9090-RDPP

 5951900000
 01-1003W-10/32-15
 0131700000
 00-2240
 LTP70N06
 LVP640
 5J0-1000LG-SIL
 LY1D-2-5S-AC120
 LY2-US-AC240
 LY3

 UA-DC24
 00576P0020
 00600P0010
 LZN4-UA-DC12
 LZNQ2M-US-DC5
 LZNQ2-US-DC12
 LZP40N10
 00-8196-RDPP
 00-8274-RDPP

 00-8275-RDNP
 00-8722-RDPP
 00-8728-WHPP
 00-8869-RDPP
 00-9051-RDPP
 00-9091-LRPP
 00-9291-RDPP
 0207100000
 0207400000

 01312
 0134220000
 60713816
 M15730061
 61161-90
 61278-0020
 6131-204-23149P
 6131-205-17149P
 6131-209-15149P
 6131-218-17149P

 6131-220-21149P
 6131-260-2358P
 6131-265-11149P
 6131-205-17149P
 6131-209-15149P
 6131-218-17149P