Two Pair, N - and P-Channel
 Enhancement-Mode MOSFET

Features

- High voltage Vertical DMOS technology
- Integrated gate-to-source resistor
- Integrated gate-to-source Zener diode
- Low threshold, Low on-resistance
- Low input \& output capacitance
- Fast switching speeds
- Electrically isolated N - and P-MOSFET pairs

Applications

- High voltage pulsers
- Amplifiers
- Buffers
- Piezoelectric transducer drivers
- General purpose line drivers
- Logic level interfaces

General Description

The Supertex TC8220 consists of two pairs of high voltage, low threshold N -channel and P-channel MOSFETs in a 12-Lead DFN package. All MOSFETs have integrated the gate-to-source resistors and gate-to-source Zener diode clamps which are desired for high voltage pulser applications. The complimentary, high-speed, high voltage, gate-clamped N and P-channel MOSFET pairs utilize an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices.

Characteristic of all MOS structures, these devices are free from thermal runaway and thermally induced secondary breakdown. Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input and output capacitance, and fast switching speeds are desired.

Typical Application Circuit

Ordering Information

Part Number	Package Option	Packing
TC8220K6-G	12-Lead DFN (4×4)	$3000 /$ Reel

-G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	$\mathrm{BV}_{\text {DSS }}$
Drain-to-gate voltage	$\mathrm{BV}_{\text {DGS }}$
Operating and storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{j a}$
12-Lead DFN	$42^{\circ} \mathrm{C} / \mathrm{W}$

Note:
1.0oz, 4-layer, 3"x4" PCB.

Product Summary

$\mathbf{B V}_{\text {DSs }} / \mathbf{B V}_{\text {DGS }}$		$\mathbf{R}_{\text {DS(ON) }}(\max)$	
N-Channel	P-Channel	N-Channel	P-Channel
200 V	-200 V	5.3Ω	6.5Ω

Pin Configuration

Package Marking

12-Lead DFN

N-Channel Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$B V_{\text {Dss }}$	Drain-to-source breakdown voltage	200	-	-	V	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~mA}$
$V_{\text {GS(th) }}$	Gate threshold voltage	1.0	-	2.4	V	$V_{G S}=V_{D S}, I_{D}=1.0 \mathrm{~mA}$
$\Delta V_{\text {GS(th) }}$	Change in $\mathrm{V}_{\text {GS(th) }}$ with temperature	-	-	-4.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$V_{G S}=V_{D S}, I_{D}=1.0 \mathrm{~mA}$
R_{GS}	Gate-to-source shunt resistor	10	-	50	K Ω	$\mathrm{I}_{\text {GS }}=100 \mu \mathrm{~A}$
$\mathrm{V} \mathrm{Z}_{\text {Gs }}$	Gate-to-source Zener voltage	13.2	-	25	V	$\mathrm{I}_{\mathrm{GS}}=2.0 \mathrm{~mA}$
$\mathrm{I}_{\text {DSs }}$	Zero gate voltage drain current	-	-	10.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=$ Max rating, $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	-	1.0	mA	$\begin{aligned} & V_{D S}=0.8 \mathrm{Max} \text { Rating, } \\ & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$I_{\text {DON })}$	On-state drain current	1.3	-	-	A	$\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}$
		2.3	-	-		$\mathrm{V}_{\text {GS }}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=50 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Static drain-to-source on-state resistance	-	-	6.5	Ω	$\mathrm{V}_{G S}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$
		-	-	6.0		$\mathrm{V}_{\text {GS }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$
$\Delta \mathrm{R}_{\mathrm{os} \text { (ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{O})}$ with temperature	-	-	1.0	\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {GS }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$
$\mathrm{G}_{\text {FS }}$	Forward transconductance	400	-	-	mmho	$V_{D S}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	56	-	pF	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, \\ & V_{D S}=25 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	13	-		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	2.0	-		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-on delay time	-	-	10	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$
t_{r}	Rise time	-	-	15		
$\mathrm{t}_{\text {d(OFF) }}$	Turn-off delay time	-	-	20		
t_{f}	Fall time	-	-	15		
$\mathrm{V}_{\text {SD }}$	Diode forward voltage drop	-	-	1.8	V	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=500 \mathrm{~mA}$
t_{tr}	Reverse recovery time	-	300	-	ns	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=500 \mathrm{~mA}$

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: $300 \mu \mathrm{~s}$ pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

N-Channel Switching Waveforms and Test Circuit

P-Channel Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$B V_{\text {DSs }}$	Drain-to-source breakdown voltage	-200	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.0 \mathrm{~mA}$
$\mathrm{V}_{\text {GS(th) }}$	Gate threshold voltage	-1.0	-	-2.4	V	$V_{G S}=V_{D S}, I_{D}=-1.0 \mathrm{~mA}$
$\Delta V_{\text {GS(th) }}$	Change in $\mathrm{V}_{\text {GS(th) }}$ with temperature	-	-	4.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$V_{G S}=V_{D S}, I_{D}=-1.0 \mathrm{~mA}$
$\mathrm{R}_{\text {GS }}$	Gate-to-source shunt resistor	10	-	50	$\mathrm{K} \Omega$	$\mathrm{I}_{G S}=100 \mu \mathrm{~A}$
VZ GS	Gate-to-source Zener voltage	13.2	-	25	V	$\mathrm{I}_{\text {GS }}=-2.0 \mathrm{~mA}$
$\mathrm{I}_{\text {DSs }}$	Zero gate voltage drain current	-	-	-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=$ Max rating, $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	-	-1.0	mA	$\begin{aligned} & V_{\text {DS }}=0.8 \mathrm{Max} \text { Rating, } \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\text {(ON) }}$	On-state drain current	-1.2	-	-	A	$\mathrm{V}_{\text {GS }}=-5.0 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=-25 \mathrm{~V}$
		-2.3	-	-		$V_{G S}=-10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=-50 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Static drain-to-source on-state resistance	-	-	8.5	Ω	$V_{G S}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-150 \mathrm{~mA}$
		-	-	7.0		$V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.0 \mathrm{~A}$
$\Delta \mathrm{R}_{\text {DS(ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with temperature	-	-	1.0	\%/ ${ }^{\circ} \mathrm{C}$	$V_{G S}=-10 \mathrm{~V}, I_{D}=-1.0 \mathrm{~A}$
$\mathrm{G}_{\text {FS }}$	Forward transconductance	400	-	-	mmho	$V_{\text {DS }}=-25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	75	-	pF	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, \\ & V_{\text {DS }}=-25 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	21	-		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	6.5	-		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-on delay time	-	-	10	ns	$\begin{aligned} & V_{\mathrm{DD}}=-25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=-1.0 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$
t_{r}	Rise time	-	-	15		
$\mathrm{t}_{\text {(IOFF) }}$	Turn-off delay time	-	-	20		
t_{f}	Fall time	-	-	15		
$\mathrm{V}_{\text {SD }}$	Diode forward voltage drop	-	-	-1.8	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=-500 \mathrm{~mA}$
$\mathrm{t}_{\text {tr }}$	Reverse recovery time	-	300	-	ns	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=-500 \mathrm{~mA}$

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: $300 \mu \mathrm{~s}$ pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

P-Channel Switching Waveforms and Test Circuit

Pin Description

Pin \#	Function	Description	Pin \#	Function	Description
1	GN1	Gate of N-MOSFET 1	7	DP2	Drain of P-MOSFET 2
2	GP1	Gate of P-MOSFET 1	8	DN2	Drain of N-MOSFET 2
3	GN2	Gate of N-MOSFET 2	9	SP1	Source of P-MOSFET 1
4	SN2	Source of N-MOSFET 2	10	DP1	Drain of P-MOSFET 1
5	GP2	Gate of P-MOSFET 2	11	DN1	Drain of N-MOSFET 1
6	SP2	Source of P-MOSFET 2	12	SN1	Source of N-MOSFET 1

Note:
Thermal Pad must be grounded.

12-Lead DFN Package Outline (K6)

$4.00 \times 4.00 \mathrm{~mm}$ body, 1.00 mm height (max), 0.50 mm pitch

Top View

Side View

Bottom View

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded marklidentifier; an embedded metal marker; or a printed indicator.
2. Depending on the method of manufacturing, a maximum of 0.15 mm pullback (L1) may be present.
3. The inner tip of the lead may be either rounded or square.

Symbol		A	A1	A3	b	D	D2	E	E2	e	L	L1	θ
Dimension (mm)	MIN	0.80	0.00	$\begin{aligned} & 0.20 \\ & \text { REF } \end{aligned}$	0.18	3.85	3.19	3.85	2.29	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.30	0.00	0°
	NOM	0.90	0.02		0.25	4.00	3.34	4.00	2.44		0.40	-	-
	MAX	1.00	0.05		0.30	4.15	3.44	4.15	2.54		0.50	0.15	14°

Drawings not to scale.

Supertex Doc.\#: DSPD-12DFNK64X4P050, Version A030210.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

