N-Channel Enhancement-Mode Vertical DMOS FET

Features

- Low threshold (2.0V max.)
- High input impedance
- Low input capacitance (125pF max.)
- Fast switching speeds
- Low on-resistance
- Free from secondary breakdown
- Low input and output leakage
- Complementary N - and P-channel devices

Applications

- Logic level interfaces - ideal for TTL and CMOS
- Solid state relays
- Battery operated systems
- Photo voltaic drives
- Analog switches
- General purpose line drivers
- Telecom switches

General Description

This low threshold, enhancement-mode (normally-off) transistor utilizes a vertical DMOS structure and Supertex's well-proven, silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

Device	Package Options			$\mathrm{BV}_{\mathrm{DSs}} / \mathrm{BV}_{\mathrm{DGs}}$ (V)	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (max) (Ω)	$I_{D(O N)}$ (min) (A)	$\begin{gathered} \mathbf{V}_{\mathrm{GS}(\mathrm{th})} \\ (\max) \\ (\mathrm{V}) \end{gathered}$
	TO-92	TO-243AA (SOT-89)	Die*				
TN2540	TN2540N3-G	TN2540N8-G	TN2540ND	400	12	1.0	2.0

-G indicates package is RoHS compliant ('Green')

* MIL visual screening available

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	$\mathrm{BV}_{\text {DSS }}$
Drain-to-gate voltage	$\mathrm{BV}_{\text {DGS }}$
Gate-to-source voltage	$\pm 20 \mathrm{~V}$
Operating and storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering temperature*	$300^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

* Distance of 1.6 mm from case for 10 seconds.

Pin Configurations

TO-92 (N3)
TO-243AA (SOT-89) (N8)

Product Marking

$Y Y=$ Year Sealed WW = Week Sealed
___ = "Green" Packaging
TO-92 (N3)
TN5DW
W = Code for week sealed
\qquad = "Green" Packaging

Thermal Characteristics

Package		$\underset{\text { (pulsed) }}{\mathrm{I}_{\mathrm{D}}}$ (A)	Power Dissipation $@ T_{A}=25^{\circ} \mathrm{C}$ (W)	$\begin{gathered} \theta_{j c} \\ \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	$\begin{gathered} \boldsymbol{\theta}_{j a} \\ \left({ }^{\circ} \mathbf{C} / \mathbf{W}\right) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{DR}}{ }^{2} \\ & (\mathrm{~mA}) \end{aligned}$	$I_{\text {DRM }}$ (A)
TO-92	175	2.0	0.74	125	170	175	2.0
TO-243AA (SOT-89)	260	1.8	$1.6{ }^{\ddagger}$	15	$78^{ \pm}$	260	1.8

Notes:

$\dagger I_{D}$ (continuous) is limited by max rated T_{j}
\ddagger Mounted on FR5 Board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$.
Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$B V_{\text {DSs }}$	Drain-to-source breakdown voltage	400	-	-	V	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$
$V_{\text {GS(th) }}$	Gate threshold voltage	0.6	-	2.0	V	$V_{G S}=V_{D S}, I_{D}=1.0 \mathrm{~mA}$
$\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Change in $\mathrm{V}_{\text {GS(th) }}$ with temperature	-	-2.5	-4.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$V_{G S}=V_{D S}, I_{D}=1.0 \mathrm{~mA}$
$\mathrm{l}_{\text {Gss }}$	Gate body leakage	-	-	100	nA	$V_{G S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
$\mathrm{I}_{\text {Dss }}$	Zero gate voltage drain current	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=$ Max Rating
		-	-	1.0	mA	$\begin{aligned} & V_{\text {DS }}=0.8 \text { Max Rating, } \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{A}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{DO} \text { (})}$	On-state drain current	0.3	0.5	-	A	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}$
		0.75	1.0	-		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}$
$\mathrm{R}_{\text {DS(ON) }}$	Static drain-to-source on-state resistance	-	8.0	12	Ω	$\mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$
		-	8.0	12		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}$
$\Delta \mathrm{R}_{\text {DS(ON })}$	Change in $\mathrm{R}_{\mathrm{DS}(\text { ON })}$ with temperature	-	-	0.75	\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}$
$\mathrm{G}_{\text {FS }}$	Forward transductance	125	200	-	mmho	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	95	125	pF	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, \\ & V_{D S}=25 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	20	70		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	10	25		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-on delay time	-	-	20	ns	$\begin{aligned} & V_{\mathrm{DD}}=25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$
t_{r}	Rise time	-	-	15		
$\mathrm{t}_{\text {d(OFF) }}$	Turn-off delay time	-	-	25		
t_{f}	Fall time	-	-	20		
$\mathrm{V}_{\text {SD }}$	Diode forward voltage drop	-	-	1.8	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=200 \mathrm{~mA}$
$\mathrm{t}_{\text {t }}$	Reverse recovery time	-	300	-	ns	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=1.0 \mathrm{~A}$

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: $300 \mu \mathrm{~s}$ pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

Typical Performance Curves

Transconductance vs. Drain Current

Saturation Characteristics

Power Dissipation vs. Ambient Temperature

Thermal Response Characteristics

Typical Performance Curves (cont.)

Transfer Characteristics

Capacitance vs. Drain-to-Source Voltage

Gate Drive Dynamic Characteristics

3-Lead TO-92 Package Outline (N3)

Front View

Side View

Bottom View

Symbol		A	b	c	D	E	E1	e	e1	L
Dimensions (inches)	MIN	. 170	. $014{ }^{+}$. $014{ }^{+}$. 175	. 125	. 080	. 095	. 045	. 500
	NOM	-	-	-	-	-	-	-	-	-
	MAX	. 210	.022 ${ }^{+}$.022 ${ }^{+}$. 205	. 165	. 105	. 105	. 055	.610*

[^0]
3-Lead TO-243AA (SOT-89) Package Outline (N8)

Top View

Side View

Symbol		A	b	b1	C	D	D1	E	E1	e	e1	H	L
Dimensions (mm)	MIN	1.40	0.44	0.36	0.35	4.40	1.62	2.29	2.13	$\begin{aligned} & 1.50 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 3.00 \\ & \text { BSC } \end{aligned}$	3.94	0.89
	NOM	-	-	-	-	-	-	-	-			-	-
	MAX	1.60	0.56	0.48	0.44	4.60	1.83	2.60	2.29			4.25	1.20

JEDEC Registration TO-243, Variation AA, Issue C, July 1986.
Drawings not to scale.
Supertex Doc. \#: DSPD-3TO243AAN8, Version D070908.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^1]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7

[^0]: JEDEC Registration TO-92.

 * This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.
 \dagger This dimension is a non-JEDEC dimension.
 Drawings not to scale.
 Supertex Doc.\#: DSPD-3TO92N3, Version D080408.

[^1]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

