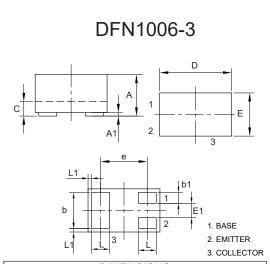


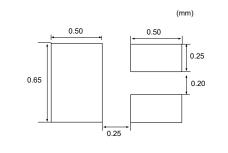
#### **Features**

- Halogen Free Available Upon Request By Adding Suffix "-HF"
- Moisture Sensitivity Level 1
- · Epoxy Meets UL 94 V-0 Flammability Rating
- Lead Free Finish/RoHS Compliant ("P" Suffix Designates RoHS Compliant. See Ordering Information)


## Maximum Ratings @ 25°C Unless Otherwise Specified

- Operating Junction Temperature Range: -55°C to +150°C
- Storage Temperature Range: -55°C to +150°C

| Parameter                   | Symbol           | Rating | Unit |
|-----------------------------|------------------|--------|------|
| Collector-Base Voltage      | V <sub>CBO</sub> | 60     | V    |
| Collector-Emitter Voltage   | V <sub>CEO</sub> | 40     | V    |
| Emitter-Base Voltage        | V <sub>EBO</sub> | 6      | V    |
| Collector Current           | I <sub>C</sub>   | 200    | mA   |
| Collector Power Dissipation | P <sub>C</sub>   | 150    | mW   |


Marking: 1AM

# NPN General Purpose Amplifier

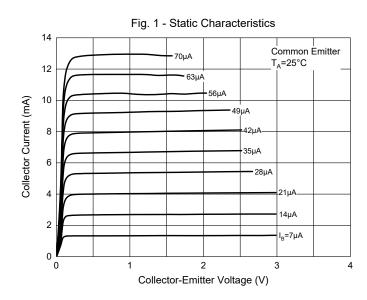


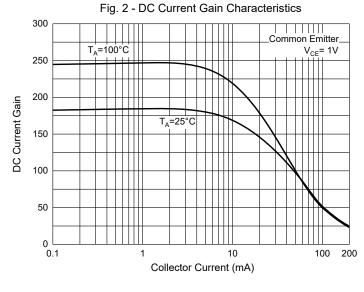
| DIMENSIONS |        |       |      |       |      |
|------------|--------|-------|------|-------|------|
| DIM        | INCHES |       | MM   |       | NOTE |
|            | MIN    | MAX   | MIN  | MAX   | NOIL |
| Α          | 0.018  | 0.022 | 0.45 | 0.55  |      |
| A1         | 0.000  | 0.002 | 0.00 | 0.05  |      |
| b          | 0.018  | 0.022 | 0.45 | 0.55  |      |
| b1         | 0.004  | 0.008 | 0.10 | 0.20  |      |
| С          | 0.005  | 0.007 | 0.12 | 0.18  |      |
| D          | 0.037  | 0.042 | 0.95 | 1.075 |      |
| E          | 0.022  | 0.026 | 0.55 | 0.675 |      |
| E1         | 0.006  | 0.010 | 0.15 | 0.25  |      |
| е          | 0.0    | )26   | 0.65 |       | TYP. |
| L          | 0.008  | 0.012 | 0.20 | 0.30  |      |
| L1         | 0.0    | 002   | 0.   | 05    | TYP. |

#### Suggested Solder Pad Layout

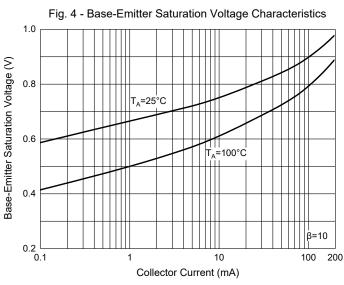


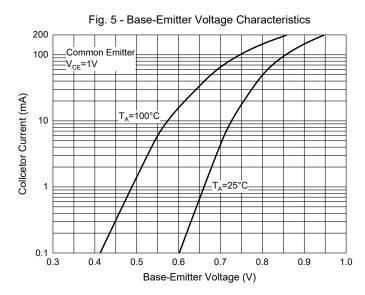


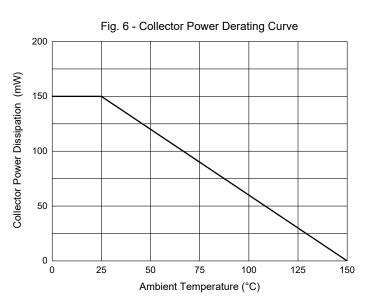

# Electrical Characteristics @ 25°C Unless Otherwise Specified


| Parameter                            | Symbol               | Min  | Тур | Max  | Units                                      | Conditions                                           |
|--------------------------------------|----------------------|------|-----|------|--------------------------------------------|------------------------------------------------------|
| Collector-Base Breakdown Voltage     | V <sub>(BR)CBO</sub> | 60   |     |      | V                                          | $I_{C}=10\mu A, I_{E}=0$                             |
| Collector-Emitter Breakdown Voltage  | V <sub>(BR)CEO</sub> | 40   |     |      | V                                          | I <sub>C</sub> =1mA, I <sub>B</sub> =0               |
| Emitter-Base Breakdown Voltage       | $V_{(BR)EBO}$        | 6    |     |      | V                                          | $I_E=10\mu A, I_C=0$                                 |
| Collector-Base Cutoff Current        | I <sub>CBO</sub>     |      |     | 50   | nA                                         | $V_{CB}$ =30V, $I_E$ =0                              |
| Emitter-Base Cutoff Current          | I <sub>EBO</sub>     |      |     | 50   | nA                                         | $V_{EB}$ =5V, $I_C$ =0                               |
| DC Current Gain <sup>(Note1)</sup>   | h <sub>FE(1)</sub>   | 40   |     |      |                                            | V <sub>CE</sub> =1V, I <sub>C</sub> =0.1mA           |
|                                      | h <sub>FE(2)</sub>   | 70   |     |      |                                            | V <sub>CE</sub> =1V, I <sub>C</sub> =1mA             |
|                                      | h <sub>FE(3)</sub>   | 100  |     | 300  |                                            | V <sub>CE</sub> =1V, I <sub>C</sub> =10mA            |
|                                      | h <sub>FE(4)</sub>   | 60   |     |      |                                            | V <sub>CE</sub> =1V, I <sub>C</sub> =50mA            |
|                                      | h <sub>FE(5)</sub>   | 30   |     |      |                                            | V <sub>CE</sub> =1V, I <sub>C</sub> =100mA           |
| Collector-Emitter Saturation Voltage | V <sub>CE(sat)</sub> |      |     | 0.2  | V                                          | I <sub>C</sub> =10mA, I <sub>B</sub> =1mA            |
|                                      |                      |      |     | 0.3  | V                                          | I <sub>C</sub> =50mA, I <sub>B</sub> =5mA            |
| Base-Emitter Saturation Voltage      | V <sub>BE(sat)</sub> | 0.65 |     | 0.85 | V                                          | I <sub>C</sub> =10mA, I <sub>B</sub> =1mA            |
|                                      |                      |      |     | 0.95 | V                                          | I <sub>C</sub> =50mA, I <sub>B</sub> =5mA            |
| Transition Frequency                 | f <sub>T</sub>       | 300  |     |      | MHz                                        | V <sub>CE</sub> =20V, I <sub>C</sub> =10mA, f=100MHz |
| Output Capacitance                   | C <sub>ob</sub>      |      |     | 4    | pF                                         | V <sub>CB</sub> =5V, I <sub>E</sub> =0, f=1MHz,      |
| Noise Figure                         | NF                   |      | 5   | 5 dB | V <sub>CE</sub> =5V, I <sub>C</sub> =100μA |                                                      |
|                                      |                      |      |     | 5    | о ць                                       | $R_S$ =1K $\Omega$ , f=1MHz                          |
| Delay Time                           | t <sub>d</sub>       |      |     | 35   | ns                                         | $V_{CC}$ =3V, $V_{BE}$ =0.5V                         |
| Rise Time                            | t <sub>r</sub>       |      |     | 35   | ns                                         | I <sub>C</sub> =10mA, I <sub>B1</sub> =1mA           |
| Storage Time                         | t <sub>s</sub>       |      |     | 200  | ns                                         | V <sub>CC</sub> =3V, I <sub>C</sub> =10mA            |
| Fall Time                            | t <sub>f</sub>       |      |     | 50   | ns                                         | $I_{B1}=I_{B2}=1mA$                                  |

Note: 1.Pulse Width ≤ 300µs, Duty Cycle≤2.0%





#### **Curve Characteristics**
















### **Ordering Information**

| Device         | Packing                |
|----------------|------------------------|
| Part Number-TP | Tape&Reel: 10Kpcs/Reel |

Note: Adding "-HF" Suffix For Halogen Free, eg. Part Number-TP-HF

#### \*\*\*IMPORTANT NOTICE\*\*\*

**Micro Commercial Components Corp**. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp**. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp**, and all the companies whose products are represented on our website, harmless against all damages.

#### \*\*\*LIFE SUPPORT\*\*\*

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

#### \*\*\*CUSTOMER AWARENESS\*\*\*

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

Rev.3-1-10162019 4/4 MCCSEMI.COM

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Micro Commercial Components (MCC) manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B