LL4148

Silicon Epitaxial Planar Switching Diode

Fast switching diode in MiniMELF case especially suited for automatic surface mounting

LL-34

Glass case MiniMELF
Dimensions in mm

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Value	Unit
Peak Reverse Voltage	$V_{\text {RM }}$	100	V
Reverse Voltage	V_{R}	75	V
Average Rectified Forward Current	$\mathrm{I}_{\text {(}}$ (AV)	200	mA
$\begin{array}{ll}\text { Non-repetitive Peak Forward Surge Current } & \text { at } t=1 \mathrm{~s} \\ & \text { at } t=1 \mathrm{~ms} \\ & \text { at }=1 \mu \mathrm{~s}\end{array}$	$\mathrm{I}_{\text {FSM }}$	$\begin{gathered} 0.5 \\ 1 \\ 4 \\ \hline \end{gathered}$	A
Power Dissipation	$\mathrm{P}_{\text {tot }}$	$500{ }^{1)}$	mW
Junction Temperature	T_{j}	175	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$
${ }^{1)}$ Valid provided that electrodes are kept at ambient temperature.			

Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Max.	Unit
Forward Voltage at $I_{F}=10 \mathrm{~mA}$	V_{F}	-	1	V
$\begin{aligned} & \text { Leakage Current } \\ & \text { at } V_{R}=20 \mathrm{~V} \\ & \text { at } V_{R}=75 \mathrm{~V} \\ & \text { at } V_{R}=20 \mathrm{~V}, T_{j}=150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{R}} \\ & \mathrm{I}_{\mathrm{R}} \\ & \mathrm{I}_{\mathrm{R}} \end{aligned}$	-	$\begin{gathered} 25 \\ 5 \\ 50 \end{gathered}$	nA $\mu \mathrm{A}$ $\mu \mathrm{A}$
Reverse Breakdown Voltage tested with $100 \mu \mathrm{~A}$ Pulses	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	100	-	V
Capacitance at $V_{R}=0, f=1 \mathrm{MHz}$	$\mathrm{C}_{\text {tot }}$	-	4	pF
Voltage Rise when Switching ON tested with 50 mA Forward Pulses $\mathrm{tp}=0.1 \mathrm{~s}$, Rise Time $<30 \mathrm{~ns}, \mathrm{fp}=5$ to 100 KHz	V_{fr}	-	2.5	V
Reverse Recovery Time at $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	t_{rr}	-	4	ns
Thermal Resistance Junction to Ambient Air	$\mathrm{R}_{\text {thA }}$	-	$0.35{ }^{1)}$	K/mW
Rectification Efficiency at $\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\mathrm{RF}}=2 \mathrm{~V}$	η_{v}	0.45	-	-
${ }^{1)}$ Valid provided that electrodes are kept at ambient temperature.				

> Rectification Efficiency Measurement Circuit

Forward characteristics

Dynamic forward resistance
versus forward current

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Diodes - General Purpose, Power, Switching category:
Click to view products by Microdiode Electronics manufacturer:

Other Similar products are found below :
MCL4151-TR3 MMBD3004S-13-F RD0306T-H RD0506LS-SB-1H RGP30G-E373 DSE010-TR-E BAQ333-TR BAQ335-TR BAQ33GS18 BAS1602VH6327XT BAV17-TR BAV19-TR BAV301-TR BAW27-TAP HSC285TRF-E NSVBAV23CLT1G NTE525 1SS181-TP 1SS184-TP 1SS193,LF 1SS193-TP 1SS400CST2RA SBAV99LT3G SDAA13 LL4448-GS18 SHN2D02FUTW1T1G LS4150GS18 LS4151GS08 SMMBD7000LT3G FC903-TR-E 1N4449 1N4934-E3/73 1SS226-TP APT100DL60HJ RFUH20TB3S RGP30G-E354 RGP30M-E3/73 D291S45T MCL4151-TR BAS 16-02V H6327 BAS 21U E6327 BAS 28 E6327 BAS33-TAP BAS 70-02V H6327 BAV300-TR BAV303-TR3 BAW27-TR BAW56DWQ-7-F BAW56M3T5G BAW75-TAP

