

gDDR3 SDRAM Graphics Addendum

MT41J128M16 - 16 Meg x 16 x 8 Banks

Features

- $V_{DD} = V_{DDO} = +1.5V (1.425-1.575V)$
- $V_{DD} = V_{DDO} = +1.35V (1.283-1.45V)$ capable at down clocked speeds
- Differential bidirectional data strobe
- 8*n*-bit prefetch architecture
- Differential clock inputs (CK, CK#)
- · 8 internal banks
- Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals
- Programmable CAS READ latency (CL)
- Posted CAS additive latency (AL): 0, CL 1, CL 2
- Programmable CAS WRITE latency (CWL)
- Fixed burst length (BL) of 8 and burst chop (BC) of 4 (via the mode register set [MRS])
- Selectable BC4 or BL8 on-the-fly (OTF)
- · Self refresh mode
- T_C of 0°C to 95°C
 - 64ms, 8192 cycle refresh at 0°C to 85°C
 - 32ms at 85°C to 115°C
- Self refresh temperature (SRT)
- Automatic self refresh (ASR)
- Write leveling

- Multipurpose register
- · Output driver calibration

Options	Marking
Configuration	_
- 128 Meg x 16	128M16
• FBGA package (Pb-free) – x16	
 96-ball (9mm x 14mm) Rev. D 	HA
 96-ball (8mm x 14mm) Rev. K 	JT
• Timing – cycle time	
- 1.0ns @ CL = 14 (gDDR3-2000)	-093G ¹
- 1.1ns @ CL = 13 (gDDR3-1800)	-107G
- 1.25ns @ CL = 11 (gDDR3-1600)	-125G
Operating temperature	
- Commercial (0°C \leq T _C \leq 95°C)	None
Revision	:D ² /:K

- Notes: 1. Only available on Revision K.
 - 2. Revision D is not 1.35V capable.
 - 3. For complete device functionality and specifications, refer to the standard 2Gb DDR3 SDRAM data sheet found at www.micron.com. The information in this data sheet supersedes the standard data sheet.

Table 1: Key Timing Parameters

Speed Grade	Data Rate (MT/s)	Target ^t RCD- ^t RP-CL	^t RCD (ns)	^t RP (ns)	CL (ns)
-093G ¹	2000	14-14-14	14	14	14
-107G ²	1800	13-13-13	14.3	14.3	14.3
-125G ²	1600	11-11-11	13.75	13.75	13.75

- 1. Requires $V_{DD} = V_{DDO} = +1.5V_{NOM}$
- 2. $V_{DD} = V_{DDO} = +1.35V_{NOM}$ capable

Table 2: Addressing

Parameter	64 Meg x 16
Configuration	16 Meg x 16 x 8 banks
Refresh count	8K
Row addressing	16K (A[13:0])
Bank addressing	8 (BA[2:0])
Column addressing	1K (A[9:0])

2Gb: x16 gDDR3 SDRAM Graphics Addendum Features

Table 3: Part Number Cross Reference

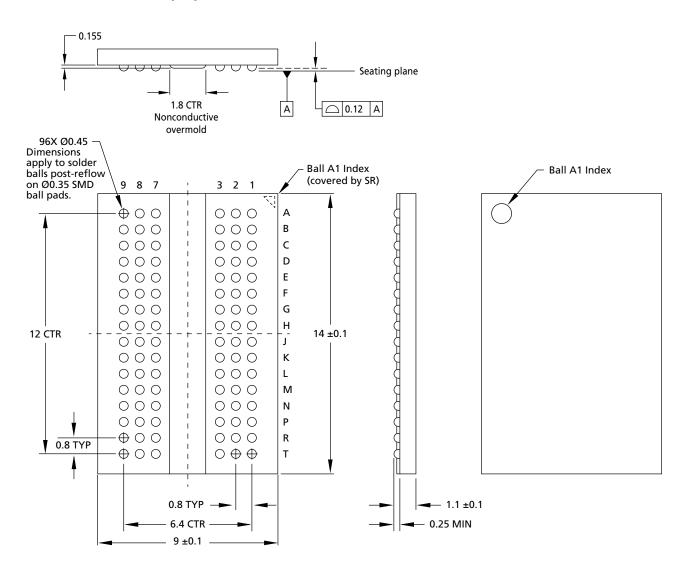
Micron Part Number	FBGA Code
MT41J128M16JT-093G:K	D9PTD
MT41J128M16JT-107G:K	D9PRS
MT41J128M16JT-125G:K	D9PRV
MT41J128M16HA-107G:D	D9PFS
MT41J128M16HA-125G:D	D9MGG

FBGA Part Marking Decoder

Due to space limitations, FBGA-packaged components have an abbreviated part marking that is different from the part number. Micron's FBGA part marking decoder is available at www.micron.com/decoder.

Ball Assignments

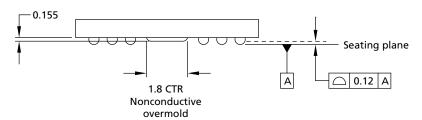
Figure 1: 96-Ball FBGA - x16 (Top View)

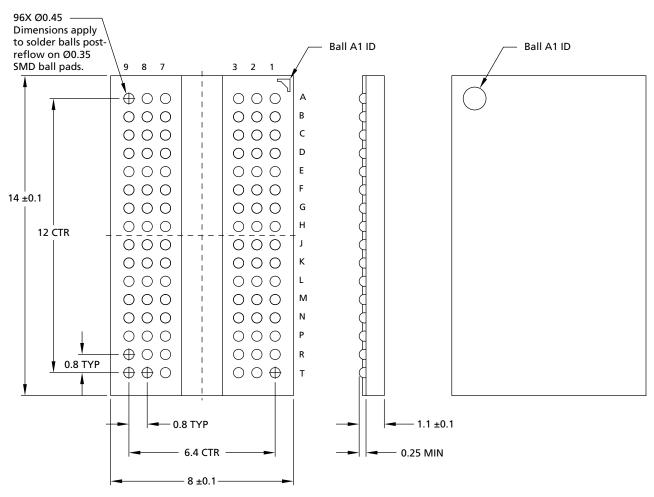

	1	2	3	4	5	6	7	8	9
Α	V _{DDQ}	DQ13	DQ15				DQ12	V_{DDQ}	$\bigcup_{V_{SS}}$
В	V _{SSQ}	$\bigvee_{V_{DD}}$	$\bigvee_{V_{SS}}$				UDQS#	DQ14	V _{SSQ}
С	V _{DDQ}	DQ11	DQ9				UDQS	DQ10	O _{DDQ}
D	V _{DDQ} V _{SSQ} V _{SSS}	$\bigvee_{V_{DDQ}}$	UDM				DQ8	$\bigcup_{V_{SSQ}}$	V _{DD}
Е	V _{SS}	$\bigvee_{V_{SSQ}}$	DQ0				LDM	$\bigvee_{V_{SSQ}}$	○ V _{DDQ}
F	V _{DDQ}	DQ2	DQ15 Vss DQ9 UDM DQ0 LDQS				UDQS DQ8 LDM DQ1	DQ14 DQ10 Vssq Vssq DQ3	Vsss Vssq VDDQ VDDQ Vssq Vssq Vssq Vssq Vssq Vssq Vssq Vss
G	V _{SSQ}	DQ6	LDQS#				$\bigvee_{V_{DD}}$	V _{SS}	V _{SSQ}
Н	VREFDQ	$\bigvee_{V_{DDQ}}$	DQ4				DQ7	DQ5	V _{DDQ}
J	NC NC	$\bigcup_{V_{SS}}$	RAS#				CK	$\bigvee_{V_{SS}}$	O NC
K	ODT	$\bigvee_{V_{DD}}$	CAS#				CK#	$\bigvee_{V_{DD}}$	CKE
L	NC NC	CS#	WE#				A10/AP	ZQ	NC NC
М	V _{SS}	BA0	\bigcirc				NC	V _{REFCA}	Vss
N	V_{DD}	A3	AO				A12/BC#	BA1	V _{DD}
Р	V _{SS}	A5	A2				A1	A4	$\bigcup_{V_{SS}}$
R	V _{SS} V _{DD} V _{SS} V _{DD} V _{SS}	A7	Δ9				A11	0	○ V _{DD}
Т	V _{SS}	RESET#	NC NC				NC NC	A8	NC CKE NC V _{SS} V _{DD} V _{SS} V _{DD} V _{SS}

- Notes: 1. Ball descriptions are listed in the main 2Gb DDR3 data sheet.
 - 2. A comma separates the configuration; a slash defines a selectable function. Example D7 = NF, NF/TDQS# is selectable between NF or TDQS# via MRS.

Package Dimensions

Figure 2: 96-Ball FBGA - x16 (HA)




Notes: 1. All dimensions are in millimeters.

2. Solder ball material: SAC 305: 96.5% Sn, 3% Ag, 0.5% Cu.

Figure 3: 96-Ball FBGA - x16 (JT)

Notes: 1. All dimensions are in millimeters.

2. Solder ball material: SAC 305: 96.5% Sn, 3% Ag, 0.5% Cu.

Electrical Specifications

Table 4: DC Electrical Characteristics and Operating Conditions

All voltages are referenced to V_{ss}

Parameter/Condition	Symbol	Min	Nom	Мах	Unit	Notes
Supply voltage	V_{DD}	1.425	1.5	1.575	V	1, 2, 3
I/O supply voltage	V_{DDQ}	1.425	1.5	1.575	V	1, 2 ,3
Supply voltage	V_{DD}	1.283	1.35	1.45	V	1, 2, 4
I/O supply voltage	V_{DDQ}	1.283	1.35	1.45	V	1, 2, 4

- Notes: 1. V_{DD} and V_{DDQ} must track one another. V_{DDQ} must be $\leq V_{DD}$. $V_{SS} = V_{SSQ}$.
 - 2. V_{DD} and V_{DDQ} may include AC noise of ±50mV (250 kHz to 20 MHz) in addition to the DC (0 Hz to 250 kHz) specifications. V_{DD} and V_{DDO} must be at same level for valid AC timing parameters.
 - 3. Valid with all speed bins.
 - 4. Not for use with -093 speed bin.

Table 5: Input/Output Capacitance

Note 1 applies to the entire table

Capacitance		gDDR3-1600		gDDR3-1800		gDDR3-2000			
Parameters	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
CK and CK#	C _{CK}	0.8	1.4	0.8	1.3	0.8	1.3	pF	
ΔC: CK to CK#	C _{DCK}	0	0.15	0	0.15	0	0.15	pF	
Single-end I/O: DQ, DM	C _{IO}	1.5	2.3	1.5	2.2	1.5	2.1	pF	2
Differential I/O: DQS, DQS#, TDQS, TDQS#	C _{IO}	1.5	2.3	1.5	2.2	1.5	2.1	pF	3
ΔC: DQS to DQS#, TDQS, TDQS#	C _{DDQS}	0	0.15	0	0.15	0	0.15	pF	3
ΔC: DQ to DQS	C _{DIO}	-0.5	0.3	-0.5	0.3	-0.5	0.3	pF	4
Inputs (CTRL, CMD, ADDR)	C _I	0.75	1.3	0.75	1.2	0.75	1.2	pF	5
ΔC: CTRL to CK	C _{DI_CTRL}	-0.4	0.2	-0.4	0.2	-0.4	0.2	pF	6
ΔC: CMD_ADDR to CK	C _{DI_CMD_ADD}	-0.4	0.4	-0.4	0.4	-0.4	0.4	pF	7
ZQ pin capacitance	C _{zO}	_	3.0	_	3.0	_	3.0	pF	
Reset pin capacitance	C _{RE}	_	3.0	_	3.0	-	3.0	pF	

- Notes: 1. $V_{DD} = 1.5V \pm 0.075 \text{mV}$, $V_{DDQ} = V_{DD}$, $V_{REF} = V_{SS}$, f = 100 MHz, $T_C = 25^{\circ}\text{C}$. $V_{OUT(DC)} = 0.5 \times 10^{-5} \text{ MHz}$ V_{DDO} , $V_{OUT} = 0.1V$ (peak-to-peak).
 - 2. DM input is grouped with I/O pins, reflecting the fact that they are matched in loading.
 - 3. Includes TDQS, TDQS#. CDDOS is for DQS vs. DQS# and TDQS vs. TDQS# separately.
 - 4. $C_{DIO} = C_{IO(DQ)} 0.5 \times (C_{IO(DQS)} + C_{IO(DQS\#)}).$
 - 5. Excludes CK, CK#; CTRL = ODT, CS#, and CKE; CMD = RAS#, CAS#, and WE#; ADDR = A[n:0], BA[2:0].
 - 6. $C_{DI_CTRL} = C_{I(CTRL)} 0.5 \times (C_{CK(CK)} + C_{CK(CK\#)}).$
 - 7. $C_{DI_CMD_ADDR} = C_{I(CMD_ADDR)} 0.5 \times (C_{CK(CK)} + C_{CK(CK\#)})$.

Electrical Characteristics – IDD Specifications

 $I_{\mbox{\scriptsize DD}}$ values are for full operating range of voltage and temperature unless otherwise noted.

Table 6: I_{DD} Maximum Limits - Die Rev D

Speed Bin				
I _{DD}	gDDR3-1600	gDDR3-1800	Units	Notes
I _{DD0}	110	120	mA	1, 2
I _{DD1}	135	140	mA	1, 2
I _{DD2P0} (slow)	12	12	mA	1, 2
I _{DD2P1} (fast)	40	45	mA	1, 2
I _{DD2Q}	40	45	mA	1, 2
I _{DD2N}	42	47	mA	1, 2
I _{DD2NT}	65	70	mA	1, 2
I _{DD3P}	45	50	mA	1, 2
I _{DD3N}	45	50	mA	1, 2
I _{DD4R}	270	295	mA	1, 2
I _{DD4W}	280	315	mA	1, 2
I _{DD5B}	215	220	mA	1, 2
I _{DD6}	12	12	mA	1, 2, 3
I _{DD6ET}	15	15	mA	2, 4
I _{DD7}	475	525	mA	1, 2
I _{DD8}	I _{DD2P0} + 2mA	I _{DD2P0} + 2mA	mA	1, 2

Table 7: I_{DD} Maximum Limits - Die Rev K

Speed Bin					
I _{DD}	gDDR3-1600	gDDR3-1800	gDDR3-2000	Units	Notes
I _{DD0}	49	51	55	mA	1, 2
I _{DD1}	69	72	75	mA	1, 2
I _{DD2P0} (slow)	12	12	12	mA	1, 2
I _{DD2P1} (fast)	15	15	15	mA	1, 2
I _{DD2Q}	22	22	22	mA	1, 2
I _{DD2N}	23	23	23	mA	1, 2
I _{DD2NT}	37	39	43	mA	1, 2
I _{DD3P}	22	22	22	mA	1, 2
I _{DD3N}	37	39	43	mA	1, 2
I _{DD4R}	135	155	180	mA	1, 2
I _{DD4W}	146	164	184	mA	1, 2
I _{DD5B}	182	184	190	mA	1, 2
I _{DD6}	12	12	12	mA	1, 2, 3

Table 7: IDD Maximum Limits - Die Rev K (Continued)

Speed Bin					
I _{DD}	gDDR3-1600	gDDR3-1800	gDDR3-2000	Units	Notes
I _{DD6ET}	15	15	15	mA	2, 4
I _{DD7}	202	226	248	mA	1, 2
I _{DD8}	I _{DD2P0} + 2mA	I _{DD2P0} + 2mA	I _{DD2P0} + 2mA	mA	1, 2

Note

- 1. $T_C = 85$ °C; SRT and ASR are disabled.
- 2. Enabling ASR could increase I_{DDx} by up to an additional 2mA.
- 3. Restricted to T_C (MAX) = 85°C.
- 4. $T_C = 85$ °C; ASR and ODT are disabled; SRT is enabled.
- 5. The I_{DD} values must be derated (increased) on IT-option devices when operated outside of the range $0^{\circ}C \le T_C \le 85^{\circ}C$:

5a. When $T_C < 0$ °C: I_{DD2P} and I_{DD3P} must be derated by 4%; I_{DD4R} and I_{DD5W} must be derated by 2%; and I_{DD6} and I_{DD7} must be derated by 7%.

5b. When $T_C > 85^{\circ}C$: I_{DD0} , I_{DD1} , I_{DD2N} , I_{DD2NT} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD4R} , I_{DD4W} , and I_{DD5W} must be derated by 2%; I_{DD2Px} must be derated by 30%.

Speed Bin Tables

Table 8: gDDR3-1600 Speed Bins

gDDR3-1600 Speed Bin	-125G					
CL- ^t RCD- ^t RP		11-1	1-11	1		
Parameter		Symbol	Min	Max	Unit	Notes
ACTIVATE to internal READ	or WRITE delay time	^t RCD	13.75	_	ns	
PRECHARGE command perio	od	^t RP	13.75	_	ns	
ACTIVATE-to-ACTIVATE or RI	EFRESH command period	^t RC	48.75	_	ns	
ACTIVATE-to-PRECHARGE co	mmand period	^t RAS	35	9 x ^t REF	ns	1
CL = 5	CWL = 5	^t CK (AVG)	3.0	3.3	ns	2
	CWL = 6, 7, 8	^t CK (AVG)	Rese	rved	ns	3
CL = 6	CWL = 5	^t CK (AVG)	2.5	3.3	ns	2
	CWL = 6, 7, 8	^t CK (AVG)	Reserved		ns	3
CL = 7	CWL = 5	^t CK (AVG)	Reserved		ns	3
	CWL = 6	tCK (AVG)	1.875	<2.5	ns	2
	CWL = 7, 8	tCK (AVG)	Reserved		ns	3
CL = 8	CWL = 5	tCK (AVG)	Reserved		ns	3
	CWL = 6	tCK (AVG)	1.875	<2.5	ns	2
	CWL = 7, 8	^t CK (AVG)	Rese	rved	ns	3
CL = 9	CWL = 5, 6	^t CK (AVG)	Rese	rved	ns	3
	CWL = 7	^t CK (AVG)	1.5	<1.875	ns	2
	CWL = 8	^t CK (AVG)	Rese	rved	ns	3
CL = 10	CWL = 5, 6	^t CK (AVG)	Rese	rved	ns	3
	CWL = 7	^t CK (AVG)	1.5	<1.875	ns	2
	CWL = 8	tCK (AVG)	Rese	rved	ns	3
CL = 11	CWL = 5, 6, 7	tCK (AVG)	Rese	rved	ns	3
	CWL = 8	tCK (AVG)	1.25	<1.5	ns	2
Supported CL settings			5, 6, 7, 8, 9, 10, 11		СК	
Supported CWL settings			5, 6,	7, 8	CK	

- Notes: 1. ^tREFI depends on T_{OPER}.
 - 2. The CL and CWL settings result in ^tCK requirements. When making a selection of ^tCK, both CL and CWL requirement settings need to be fulfilled.
 - 3. Reserved settings are not allowed.

2Gb: x16 gDDR3 SDRAM Graphics Addendum Speed Bin Tables

Table 9: gDDR3-1800 Speed Bins

gDDR3-1800 Speed Bin	-10	7G				
CL- ^t RCD- ^t RP			13-1	3-13		
Parameter		Symbol	Min	Мах	Unit	Notes
ACTIVATE to internal READ	or WRITE delay time	^t RCD	14.3	_	ns	
PRECHARGE command peri	od	^t RP	14.3	-	ns	
ACTIVATE-to-ACTIVATE or F	REFRESH command period	^t RC	48.91	-	ns	
ACTIVATE-to-PRECHARGE of	ommand period	^t RAS	35	9 x ^t REFI	ns	1
CL = 5	CWL = 5	^t CK (AVG)	3.0	3.3	ns	3
	CWL = 6, 7, 8, 9	^t CK (AVG)	Rese	rved	ns	3
CL = 6	CWL = 5	^t CK (AVG)	2.5	3.3	ns	2
	CWL = 6, 7, 8, 9	^t CK (AVG)	Rese	rved	ns	3
CL = 7	CWL = 5, 7, 8, 9	^t CK (AVG)	Reserved		ns	3
	CWL = 6	^t CK (AVG)	2.5	3.3	ns	3
CL = 8	CWL = 5, 7, 8, 9	^t CK (AVG)	Reserved		ns	3
	CWL = 6	^t CK (AVG)	1.875	<2.5	ns	2
CL = 9	CWL = 5, 6, 8, 9	^t CK (AVG)	Reserved		ns	3
	CWL = 7	tCK (AVG)	1.875	<2.5	ns	3
CL = 10	CWL = 5, 6, 9	^t CK (AVG)	Rese	erved	ns	3
	CWL = 7	tCK (AVG)	1.5	<1.875	ns	2
	CWL = 8	^t CK (AVG)	Rese	erved	ns	3
CL = 11	CWL = 5, 6, 7	^t CK (AVG)	Rese	rved	ns	3
	CWL = 8	^t CK (AVG)	1.5	<1.875	ns	3
	CWL = 9	^t CK (AVG)	Rese	rved	ns	3
CL - 12	CWL = 5, 6, 7, 8	tCK (AVG)	Rese	rved	ns	3
	CWL = 9	tCK (AVG)	Rese	rved	ns	3
CL = 13	CWL = 5, 6, 7, 8	tCK (AVG)	Rese	rved	ns	3
	CWL = 9	tCK (AVG)	1.1	<1.25	ns	2
Supported CL settings		'	5, 6, 7, 8, 9	, 10, 11, 13	CK	
Supported CWL settings			5, 6,	7, 8, 9	CK	

- Notes: 1. ^tREFI depends on T_{OPER}.
 - 2. The CL and CWL settings result in ^tCK requirements. When making a selection of ^tCK, both CL and CWL requirement settings need to be fulfilled.
 - 3. Reserved settings are not allowed.

2Gb: x16 gDDR3 SDRAM Graphics Addendum Speed Bin Tables

Table 10: gDDR3-2000 Speed Bins

gDDR3-2000 Speed Bin		-0	93G			
CL- ^t RCD- ^t RP			14-	14-14		
Parameter		Symbol	Min	Max	Unit	Notes
ACTIVATE to internal READ o	r WRITE delay time	^t RCD	14	-	ns	
PRECHARGE command period	I	^t RP	14	_	ns	
ACTIVATE-to-ACTIVATE or RE	FRESH command period	^t RC	50	_	ns	
ACTIVATE-to-PRECHARGE command period		^t RAS	36	9 x ^t REFI	ns	1
CL = 5	CWL = 5	^t CK (AVG)	3.0	3.3	ns	3
	CWL = 6, 7, 8, 9	^t CK (AVG)	Res	served	ns	3
CL = 6	CWL = 5	^t CK (AVG)	2.5	3.3	ns	2
	CWL = 6, 7, 8, 9	^t CK (AVG)	Res	served	ns	3
CL = 7	CWL = 5, 7, 8, 9	^t CK (AVG)	2.5	3.3	ns	3
	CWL = 6		Reserved		ns	3
CL = 8	CWL = 5, 7, 8, 9	^t CK (AVG)	Reserved		ns	3
	CWL = 6	^t CK (AVG)	1.875	<2.5	ns	2
CL = 9	CWL = 5, 6, 8, 9	^t CK (AVG)	Reserved		ns	3
	CWL = 7	^t CK (AVG)	1.875	<2.5	ns	3
CL = 10	CWL = 5, 6, 9	^t CK (AVG)	Res	served	ns	3
	CWL = 7	^t CK (AVG)	1.5	<1.875	ns	2
	CWL = 8	^t CK (AVG)	Res	served	ns	3
CL = 11	CWL = 5, 6, 7	tCK (AVG)	Res	served	ns	3
	CWL = 8	tCK (AVG)	1.5	<1.875	ns	3
	CWL = 9	tCK (AVG)	Res	served	ns	3
CL - 12	CWL = 5, 6, 7, 8	tCK (AVG)	Res	served	ns	3
	CWL = 9	tCK (AVG)	Res	served	ns	3
CL = 13	CWL = 5, 6, 7, 8	^t CK (AVG)	Res	served	ns	3
	CWL = 9	^t CK (AVG)	1.1	<1.25	ns	2
CL = 14	CWL = 5, 6, 7, 8, 9	tCK (AVG)	1	<1.1	ns	2
	CWL = 10					
Supported CL settings			5, 6, 7, 8, 9,	10, 11, 13, 14	CK	
Supported CWL settings			5, 6, 7	, 8, 9, 10	CK	

- Notes: 1. ^tREFI depends on T_{OPER}.
 - 2. The CL and CWL settings result in ^tCK requirements. When making a selection of ^tCK, both CL and CWL requirement settings need to be fulfilled.
 - 3. Reserved settings are not allowed.

Electrical Characteristics and AC Operating Conditions

Table 11: Electrical Characteristics and AC Operating Conditions for Speed Extensions

			gDDR:	3-1600	gDDR:	3-1800	gDDR:	3-2000		
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
			Clock	Timing						
Clock period aver-	$T_C = 0$ °C to 85°C	^t CK	8	7800	8	7800	8	7800	ns	9, 42
age: DLL disable mode	T _C = >85°C to 95°C	(DLL_DIS)	8	3900	8	3900	8	3900	ns	42
Clock period averag	e: DLL enable	^t CK (AVG)	See co	rresondin		oin table ved	for ^t CK ra	inge al-	ns	10, 11
High pulse width av	erage	^t CH (AVG)	0.47	0.53	0.47	0.53	0.47	0.53	CK	12
Low pulse width ave	erage	tCL (AVG)	0.47	0.53	0.47	0.53	0.47	0.53	CK	12
Clock period jitter	DLL locked	^t JIT _{PER}	-80	80	-70	70	-60	60	ps	13
	DLL locking	^t JIT _{PER} ,lck	-70	70	-60	60	-50	50	ps	13
Clock absolute perio	od	^t CK (ABS)		MIN = tC		MIN + ^t JI7		(ps	
Clock absolute high	pulse width	^t CH (ABS)	0.43	-	0.43	_	0.43	_	^t CK (AVG)	14
Clock absolute low	pulse width	^t CL (ABS)	0.43	-	0.43	-	- 0.43		^t CK (AVG)	15
Cycle-to-cycle jitter	DLL locked	^t JIT _{CC}	160		14	40	12	20	ps	16
	DLL locking	^t JIT _{CC} ,lck	14	40	1:	20	100		ps	16
Cumulative error	2 cycles	tERR2 _{PER}	-118	118	-103	103	-88	88	ps	17
across	3 cycles	tERR3 _{PER}	-140	140	-122	122	-105	105	ps	17
	4 cycles	tERR4 _{PER}	-155	155	-136	136	-117	117	ps	17
	5 cycles	tERR5 _{PER}	-168	168	-147	147	-126	126	ps	17
	6 cycles	tERR6 _{PER}	-177	177	-155	155	-133	133	ps	17
	7 cycles	tERR7 _{PER}	-186	186	-163	163	-139	139	ps	17
	8 cycles	tERR8 _{PER}	-193	193	-169	169	-145	145	ps	17
	9 cycles	tERR9 _{PER}	-200	200	-175	175	-150	150	ps	17
	10 cycles	tERR10 _{PER}	-205	205	-180	180	-154	154	ps	17
	11 cycles	tERR11 _{PER}	-210	210	-184	184	-158	158	ps	17
	12 cycles	tERR12 _{PER}	-215	215	-188	188	-161	161	ps	17
	n = 13, 1449, 50 cycles	^t ERR <i>n</i> per		R _{nper} MIN					ps	17
			DQ Inpu	ut Timing	g					
Data setup time to DQS, DQS#	Base (specifica-tion)	^t DS (AC175)	_	_	_	_	_	_	ps	18, 19
	V _{REF} @ 1 V/ns		_	_	_	_	_	_	ps	19, 20
Data setup time to DQS, DQS#	Base (specifica-tion)	^t DS (AC150)	30	-	10	-	-	_	ps	18, 19

Table 11: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued)

			gDDR	3-1600	gDDR3-1800		gDDR3-2000			
Parameter	arameter		Min	Max	Min	Max	Min	Max	Unit	Notes
	V _{REF} @ 1 V/ns		180	_	160	_	_	_	ps	19, 20
Data setup time to DQS, DQS#	Base (specifica- tion)@ 2 V/ns	^t DS (AC135)	-	-	-	-	68	-	ps	19, 20
	V _{REF} @ 2 V/ns		_	_	_	_	135	_	ps	19, 20
Data hold time from DQS, DQS#	Base (specifica-tion)	^t DH (DC100)	65	-	45	_	70	-	ps	18, 19
	V _{REF} @ 1 V/ns		165	_	145	_	120	_	ps	19, 20
Minimum data puls	e width	^t DIPW	400	_	360	_	320	_	ps	41
			DQ Outp	ut Timir	ng	!	!			!
DQS, DQS# to DQ sk	cew, per access	^t DQSQ	_	125	_	100	_	85	ps	
DQ output hold tim DQS#	e from DQS,	^t QH	0.38	-	0.38	_	0.38	-	^t CK (AVG)	21
DQ Low-Z time fron	n CK, CK#	tLZ (DQ)	-500	250	-450	225	-390	195	ps	22, 23
DQ High-Z time from CK, CK#		^t HZ (DQ)	_	250	_	225	_	195	ps	22, 23
		DQ	Strobe	Input Tir	ning	!	!	'		!
DQS, DQS# rising to CK, CK# rising		^t DQSS	-0.25	0.25	-0.27	0.27	-0.27	0.27	CK	25
DQS, DQS# differential input low pulse width		^t DQSL	0.45	0.55	0.45	0.55	0.45	0.55	CK	
DQS, DQS# differen pulse width	tial input high	^t DQSH	0.45	0.55	0.45	0.55	0.45	0.55	CK	
DQS, DQS# falling serising	etup to CK, CK#	^t DSS	0.2	-	0.18	_	0.18	_	CK	25
DQS, DQS# falling h	old from CK, CK#	^t DSH	0.2	-	0.18	_	0.18	_	CK	25
DQS, DQS# differen amble	tial WRITE pre-	^t WPRE	0.9	-	0.9	_	0.9	-	CK	
DQS, DQS# differen amble	tial WRITE post-	tWPST	0.3	_	0.3	_	0.3	-	CK	
		DQ	Strobe C	utput Ti	ming		•	•	•	•
DQS, DQS# rising to CK#	/from rising CK,	^t DQSCK	-255	255	-225	225	-195	195	ps	23
DQS, DQS# rising to CK# when DLL is dis	•	^t DQSCK (DLL_DIS)	1	10	1	10	1	10	ns	26
DQS, DQS# differen	tial output high	^t QSH	0.40	-	0.40	-	0.40	-	CK	21
DQS, DQS# differen time	tial output low	^t QSL	0.40	-	0.40	-	0.40	-	CK	21
DQS, DQS# Low-Z ti	me (RL - 1)	tLZ (DQS)	-500	250	-450	225	-390	195	ps	22, 23
DQS, DQS# High-Z t	ime (RL + BL/2)	tHZ (DQS)	_	250	_	225	_	195	ps	22, 23

Table 11: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued)

Notes 1–8 apply to t	Critic table		qDDR	3-1600	qDDR	3-1800	qDDR	3-2000		
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
DQS, DQS# differential READ preamble		^t RPRE	0.9	Note 24	0.9	Note 24	0.9	Note 24	CK	23, 24
DQS, DQS# differen amble	tial READ post-	^t RPST	0.3	Note 27	0.3	Note 27	0.3	Note 27	CK	23, 27
		Comm	and and	Address	Timing	l				
DLL locking time		^t DLLK	512	_	512	_	512	-	CK	28
CTRL, CMD, ADDR setup to CK,CK#	Base (specification)	^t IS (AC175)	65	_	45	-	_	_	ps	29, 30
	V _{REF} @ 1 V/ns		240	_	220	_	_	_	ps	20, 30
CTRL, CMD, ADDR setup to CK,CK#	Base (specifica-tion)	^t IS (AC150)	190	_	170	_	_	_	ps	29, 30
	V _{REF} @ 1 V/ns		340	_	320	_	_	_	ps	20, 30
CTRL, CMD, ADDR setup to CK,CK#	Base (specification)	^t IS (AC135)	_	_	_	_	65	-	ps	
	V _{REF} @ 1 V/ns		_	_	_	_	200	_	ps	
CTRL, CMD, ADDR setup to CK,CK#	Base (specifica-tion)	^t IS (AC125)	-	_	-	_	150	_	ps	
	V _{REF} @ 1 V/ns		_	_	_	_	275	_	ps	
CTRL, CMD, ADDR hold from CK,CK#	Base (specifica-tion)	^t IH (DC100)	140	_	120	_	100	_	ps	29, 30
	V _{REF} @ 1 V/ns		240	_	220	_	200	_	ps	20, 30
Minimum CTRL, CM width	D, ADDR pulse	^t IPW	620	_	560	-	535	-	ps	41
ACTIVATE to internated	al READ or WRITE	^t RCD	See	correspo	nding sp	eed bin to	able for 1	RCD	ns	31
PRECHARGE comma	and period	^t RP	Se	e corresp	onding s	peed bin t	table for	^t RP	ns	31
ACTIVATE-to-PRECH period	IARGE command	^t RAS	See	e correspo	nding sp	eed bin t	able for	^t RAS	ns	31, 32
ACTIVATE-to-ACTIV	ATE command pe-	^t RC	Se	e correspo	onding s	peed bin t	table for	^t RC	ns	31
ACTIVATE-to-ACTIV		^t RRD		reater of or 7.5ns		reater of or 7.5ns		reater of or 6ns	CK	31
Four ACTIVATE windows		^t FAW	45	_	40	_	35	_	ns	31
Write recovery time		^t WR	15	N/A	15	N/A	15	N/A	ns	31, 32, 33
Delay from start of internal WRITE transaction to internal READ command		^t WTR	MIN = greater of 4CK or 7.5ns; MAX = N/A						CK	31, 34
READ-to-PRECHARG	GE time	tRTP	М	IN = great	er of 4CI	K or 7.5ns	; MAX =	N/A	CK	31, 32
										

Table 11: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued)

	gDDR3-1600 gDDR3-1800 gDI		gDDR	3-2000						
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
CAS#-to-CAS# comm	nand delay	^t CCD		М	IN = 4CK;	MAX = N	I/A	•	CK	
Auto precharge write charge time	te recovery + pre-	^t DAL	Ŋ	MIN = WR	+ ^t RP/ ^t Cl	((AVG); I	MAX = N/	Ά	CK	
MODE REGISTER SET	^t MRD		М	IN = 4CK;	MAX = N	I/A		CK		
MODE REGISTER SET	Γ command up-	tMOD	MI	N = great	er of 12C	K or 15ns	; MAX =	N/A	CK	
MULTIPURPOSE REG end to mode registe purpose register exi	er set for multi-	^t MPRR		М	IN = 1CK;	MAX = N	I/A		CK	
		(Calibrati	on Timir	ng					
ZQCL command: Long calibration	POWER-UP and RESET operation	^t ZQ _{INIT}	512	_	512	_	512	_	CK	
time	Normal opera- tion	^t ZQ _{OPER}	256	_	256	_	256	_	CK	
ZQCS command: Sho time	^t ZQCS	64	_	64	_	64	_	CK		
	,	Initiali	zation a	nd Reset	t Timing	!	!	'	•	!
Exit reset from CKE command	^t XPR	MIN = greater of 5CK or t RFC + 10ns; MAX = N/A						CK		
Begin power supply supplies stable	ramp to power	^t VDDPR	MIN = N/A; MAX = 200						ms	
RESET# LOW to pow	ver supplies stable	^t RPS		Ŋ	MIN = 0; 1	MAX = 20	0		ms	
RESET# LOW to I/O a	and R _{TT} High-Z	^t IOZ		N	IIN = N/A	; MAX = 2	20		ns	35
			Refres	h Timing					•	•
REFRESH-to-ACTIVAT command period	TE or REFRESH	^t RFC		MIN	N = 160; N	ЛАX = 70,	,200		ns	
Maximum refresh	T _C ≤ 85°C	-			64	(1X)			ms	36
period	T _C > 85°C				32	(2X)			ms	36
Maximum average	T _C ≤ 85°C	^t REFI			7.8 (64r	ns/8192)			μs	36
periodic refresh	T _C > 85°C				3.9 (32r	ns/8192)			μs	36
		9	elf Refr	esh Timi	ng					
Exit self refresh to conquiring a locked DLI	^t XS	MIN = greater of 5CK or ${}^{t}RFC + 10ns$; MAX = N/A						CK		
Exit self refresh to coing a locked DLL	ommands requir-	^t XSDLL	MIN = ^t DLLK (MIN); MAX = N/A						CK	28
Minimum CKE low p self refresh entry to timing		^t CKESR	$MIN = {}^{t}CKE (MIN) + CK; MAX = N/A$						CK	

Table 11: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued)

Notes 1–8 apply to the	ne entire table			5 4455						
				3-1600		3-1800		3-2000		
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Valid clocks after sell power-down entry	f refresh entry or	^t CKSRE	M	MIN = greater of 5CK or 10ns; MAX = N/A					CK	
Valid clocks before s power-down exit, o	•	^t CKSRX	М	IN = grea	ter of 5Cl	or 10ns;	MAX = N	N/A	CK	
		P	ower-Do	own Timi	ing					·
CKE MIN pulse widt	h	^t CKE (MIN)		r of 3CK 625ns		of 3CK 5ns		r of 3CK 5ns	CK	
Command pass disal	ole delay	^t CPDED			= 1; = N/A			= 2; = N/A	CK	
Power-down entry texit timing	o power-down	^t PD		MIN = ^t CKE (MIN); MAX = 9 × ^t REFI					CK	
Begin power-down CKE registered HIGH	er-down period prior to tANPD WL - 1CK						CK			
	down entry period: ODT ei- nchronous or asynchronous PDE Greater of ^t ANPD or ^t RFC - REFRESH command to CKE LOW time						CK			
Power-down exit pe synchronous or asyn		PDX		^t ANPD + ^t XPDLL						
		Power-Do	wn Ent	ry Minim	um Timi	ng				!
ACTIVATE command entry	l to power-down	^t ACTPDEN		MIN	I = 1		MIN	I = 2	CK	
PRECHARGE/PRECHA		^t PRPDEN	MIN = 1			MIN = 2		CK		
REFRESH command entry	to power-down	^t REFPDEN		MIN	l = 1		MIN	I = 2	CK	37
MRS command to po	ower-down entry	^t MRSPDEN			MIN = ^t M	OD (MIN)		CK	
READ/READ with au		^t RDPDEN			MIN = R	L + 4 + 1			CK	
WRITE command to power-down entry	BL8 (OTF, MRS) BC4OTF	^t WRPDEN				VL + 4 + < (AVG)			CK	
	BC4MRS	^t WRPDEN				VL + 2 + < (AVG)			CK	
WRITE with auto precharge com-				M	IN = WL +	4 + WR -	+ 1		CK	
mand to power- down entry	tWRAPDEN	MIN = WL + 2 + WR + 1					CK			
		Pov	ver-Dow	n Exit Ti	ming					
DLL on, any valid co off to commands no locked DLL	^t XP		MIN = greater of 3CK or 6ns; MAX = N/A					CK		

Table 11: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued)

Notes 1–8 apply to the entire table	gDDR3-1600 gDDR3-1800 gDDR3-2000								
Parameter	Symbol	Min	Max	Min	Max			Unit	Notes
Precharge power-down with DLL off to commands requiring a locked DLL	tXPDLL			reater of 10CK or 24ns; MAX = N/A					28
		ODT	Timing						
R _{TT} synchronous turn-on delay	ODTL on				CK	38			
R _{TT} synchronous turn-off delay	ODTL off			CWL +	AL - 2CK			CK	40
R_{TT} turn-on from ODTL on reference	^t AON	-250	250	-225	225	-195	195	ps	23, 38
R _{TT} turn-off from ODTL off reference	^t AOF	0.3	0.7	0.3	0.7	0.3	.07	СК	39, 40
Asynchronous R _{TT} turn-on delay (power-down with DLL off)	^t AONPD			MIN = 2; I	MAX = 8.	5		ns	38
Asynchronous R _{TT} turn-off delay (power-down with DLL off)	^t AOFPD		Í	MIN = 2; I	MAX = 8.	5		ns	40
ODT HIGH time with WRITE command and BL8	ODTH8	MIN = 6; MAX = N/A						CK	
ODT HIGH time without WRITE command or with WRITE command and BC4	ODTH4	MIN = 4; MAX = N/A						CK	
	D	ynamic	ODT Tim	ing					1
R _{TT,nom} -to-R _{TT(WR)} change skew	ODTLcnw			WL -	- 2CK			CK	
R _{TT(WR)} -to-R _{TT,nom} change skew - BC4	ODTLcnw4			4CK + 0	DDTLoff			CK	
R _{TT(WR)} -to-R _{TT,nom} change skew - BL8	ODTLcnw8			6CK + 0	DDTLoff			CK	
R _{TT} dynamic change skew	^t ADC	0.3	0.7	0.3	0.7	0.3	0.7	CK	39
	Wı	rite Leve	eling Tim	ning				•	
First DQS, DQS# rising edge	tWLMRD	40	_	40	_	40	_	CK	
DQS, DQS# delay	tWLDQSEN	25	_	25	_	25	_	СК	
Write leveling setup from rising CK, CK# crossing to rising DQS, DQS# crossing	^t WLS	195 – 165 – 140 –					ps		
Write leveling hold from rising DQS, DQS# crossing to rising CK, CK# crossing	tWLH	195	-	165	-	140	-	ps	
Write leveling output delay	tWLO	0	9	0	7.5	0	7.5	ns	

- Notes: 1. Parameters are applicable with $0^{\circ}\text{C} \le T_{\text{C}} \le 95^{\circ}\text{C}$ and $V_{\text{DD}}/V_{\text{DDQ}} = 1.5\text{V} \pm 0.075\text{V}$.
 - 2. All voltages are referenced to V_{SS}.
 - 3. Output timings are only valid for R_{ON34} output buffer selection.
 - 4. The unit ^tCK (AVG) represents the actual ^tCK (AVG) of the input clock under operation. The unit CK represents one clock cycle of the input clock, counting the actual clock
 - 5. AC timing and I_{DD} tests may use a V_{IL}-to-V_{IH} swing of up to 900mV in the test environment, but input timing is still referenced to V_{REF} (except ^tIS, ^tIH, ^tDS, and ^tDH use the

- AC/DC trip points, and CK, CK# and DQS, DQS# use their crossing points). The minimum slew rate for the input signals used to test the device is 1 V/ns for single-ended inputs and 2 V/ns for differential inputs in the range between $V_{IL(AC)}$ and $V_{IH(AC)}$.
- 6. All timings that use time-based values (ns, µs, ms) should use ^tCK (AVG) to determine the correct number of clocks (this table uses CK or ^tCK [AVG] interchangeably). In the case of noninteger results, all minimum limits are to be rounded up to the nearest whole integer, and all maximum limits are to be rounded down to the nearest whole integer.
- 7. Strobe or DQSdiff refers to the DQS and DQS# differential crossing point when DQS is the rising edge. Clock or CK refers to the CK and CK# differential crossing point when CK is the rising edge.
- 8. This output load is used for all AC timing (except ODT reference timing) and slew rates. The actual test load may be different. The output signal voltage reference point is V_{DDQ}/2 for single-ended signals and the crossing point for differential signals.
- 9. When operating in DLL disable mode, Micron does not warrant compliance with normal mode timings or functionality.
- 10. The clock's ^tCK (AVG) is the average clock over any 200 consecutive clocks and ^tCK (AVG) MIN is the smallest clock rate allowed, with the exception of a deviation due to clock jitter. Input clock jitter is allowed provided it does not exceed values specified and must be of a random Gaussian distribution in nature.
- 11. Spread spectrum is not included in the jitter specification values. However, the input clock can accommodate spread-spectrum at a sweep rate in the range of 20–60 kHz with an additional 1% of ^tCK (AVG) as a long-term jitter component; however, the spread spectrum may not use a clock rate below ^tCK (AVG) MIN.
- 12. The clock's ^tCH (AVG) and ^tCL (AVG) are the average half clock period over any 200 consecutive clocks and is the smallest clock half period allowed, with the exception of a deviation due to clock jitter. Input clock jitter is allowed provided it does not exceed values specified and must be of a random Gaussian distribution in nature.
- 13. The period jitter (^tJIT_{PER}) is the maximum deviation in the clock period from the average or nominal clock. It is allowed in either the positive or negative direction.
- 14. ^tCH (ABS) is the absolute instantaneous clock high pulse width as measured from one rising edge to the following falling edge.
- 15. ^tCL (ABS) is the absolute instantaneous clock low pulse width as measured from one falling edge to the following rising edge.
- 16. The cycle-to-cycle jitter ^tJIT_{CC} is the amount the clock period can deviate from one cycle to the next. It is important to keep cycle-to-cycle jitter at a minimum during the DLL locking time.
- 17. The cumulative jitter error ^tERR*n*PER, where *n* is the number of clocks between 2 and 50, is the amount of clock time allowed to accumulate consecutively away from the average clock over *n* number of clock cycles.
- 18. ^tDS (base) and ^tDH (base) values are for a single-ended 1 V/ns DQ slew rate and 2 V/ns differential DQS, DQS# slew rate.
- 19. These parameters are measured from a data signal (DM, DQ0, DQ1, and so forth) transition edge to its respective data strobe signal (DQS, DQS#) crossing.
- 20. The setup and hold times are listed converting the base specification values (to which derating tables apply) to V_{REF} when the slew rate is 1 V/ns. These values, with a slew rate of 1 V/ns, are for reference only.
- 21. When the device is operated with input clock jitter, this parameter needs to be derated by the actual [†]JIT_{PER} (larger of [†]JIT_{PER} (MIN) or [†]JIT_{PER} (MAX) of the input clock (output deratings are relative to the SDRAM input clock).
- 22. Single-ended signal parameter.
- 23. The DRAM output timing is aligned to the nominal or average clock. Most output parameters must be derated by the actual jitter error when input clock jitter is present, even when within specification. This results in each parameter becoming larger. The following parameters are required to be derated by subtracting term (MAX): DQSCK

- (MIN), [†]LZ(DQS) MIN, [†]LZ(DQ) MIN, and [†]AON (MIN). The following parameters are required to be derated by subtracting [†]ERR_{10PER} (MIN): [†]DQSCK (MAX), [†]HZ (MAX), [†]LZ (DQS) MAX, [†]LZ (DQ) MAX, and [†]AON (MAX). The parameter [†]RPRE (MIN) is derated by subtracting [†]JIT_{PER} (MAX), while [†]RPRE (MAX) is derated by subtracting [†]JIT_{PER} (MIN).
- 24. The maximum preamble is bound by tLZDQS (MAX).
- 25. These parameters are measured from a data strobe signal (DQS, DQS#) crossing to its respective clock signal (CK, CK#) crossing. The specification values are not affected by the amount of clock jitter applied because these are relative to the clock signal crossing. These parameters should be met whether clock jitter is present.
- 26. The ^tDQSCK (DLL DIS) parameter begins CL + AL 1 cycles after the READ command.
- 27. The maximum postamble is bound by ^tHZDQS (MAX).
- 28. Commands requiring a locked DLL are READ (and RDAP) and synchronous ODT commands. In addition, after any change of latency ^tXPDLL, timing must be met.
- 29. ^tIS (base) and ^tIH (base) values are for a single-ended 1 V/ns control/command/address slew rate and 2 V/ns CK, CK# differential slew rate.
- 30. These parameters are measured from a command/address signal transition edge to its respective clock (CK, CK#) signal crossing. The specification values are not affected by the amount of clock jitter applied as the setup and hold times are relative to the clock signal crossing that latches the command/address. These parameters should be met whether clock jitter is present.
- 31. For these parameters, the DDR3 SDRAM device supports [†]nPARAM (nCK) = RU([†]PARAM [ns]/[†]CK[AVG] [ns]), assuming all input clock jitter specifications are satisfied. For example, the device will support [†]nRP (nCK) = RU([†]RP/[†]CK[AVG]) if all input clock jitter specifications are met. This means that for DDR3-800 6-6-6, of which [†]RP = 15ns, the device will support [†]nRP = RU([†]RP/[†]CK[AVG]) = 6 as long as the input clock jitter specifications are met. That is, the PRECHARGE command at T0 and the ACTIVATE command at T0 + 6 are valid even if six clocks are less than 15ns due to input clock jitter.
- 32. During READs and WRITEs with auto precharge, the DDR3 SDRAM will hold off the internal PRECHARGE command until ^tRAS (MIN) has been satisfied.
- 33. When operating in DLL disable mode, the greater of 4CK or 15ns is satisfied for ^tWR.
- 34. The start of the write recovery time is defined as follows:
 - For BL8 (fixed by MRS and OTF): Rising clock edge four clock cycles after WL
 - For BC4 (OTF): Rising clock edge four clock cycles after WL
 - For BC4 (fixed by MRS): Rising clock edge two clock cycles after WL
- 35. RESET# should be LOW as soon as power starts to ramp to ensure the outputs are in High-Z. Until RESET# is LOW, the outputs are at risk of driving and could result in excessive current, depending on bus activity.
- 36. The refresh period is 64ms when T_C is less than or equal to 85°C. This equates to an average refresh rate of 7.8125 μ s. However, nine REFRESH commands should be asserted at least once every 70.3 μ s. When T_C is greater than 85°C, the refresh period is 32ms.
- 37. Although CKE is allowed to be registered LOW after a REFRESH command when ^tREFPDEN (MIN) is satisfied, there are cases where additional time such as ^tXPDLL (MIN) is required.
- 38. ODT turn-on time MIN is when the device leaves High-Z and ODT resistance begins to turn on. ODT turn-on time maximum is when the ODT resistance is fully on.
- 39. Half-clock output parameters must be derated by the actual ^tERR_{10PER} and ^tJIT_{DTY} when input clock jitter is present. This results in each parameter becoming larger. The parameters ^tADC (MIN) and ^tAOF (MIN) are each required to be derated by subtracting both ^tERR_{10PER} (MAX) and ^tJIT_{DTY} (MAX). The parameters ^tADC (MAX) and ^tAOF (MAX) are required to be derated by subtracting both ^tERR_{10PER} (MAX) and ^tJIT_{DTY} (MAX).
- 40. ODT turn-off time minimum is when the device starts to turn off ODT resistance. ODT turn-off time maximum is when the DRAM buffer is in High-Z.

- 41. Pulse width of an input signal is defined as the width between the first crossing of $V_{REF(DC)}$ and the consecutive crossing of $V_{REF(DC)}$.
- 42. Should the clock rate be larger than ^tRFC (MIN), an AUTO REFRESH command should have at least one NOP command between it and another AUTO REFRESH command. Additionally, if the clock rate is slower than 40ns (25 MHz), all REFRESH commands should be followed by an AUTO PRECHARGE command.

2Gb: x16 gDDR3 SDRAM Graphics Addendum Command and Address Setup, Hold, and Derating

Command and Address Setup, Hold, and Derating

The total t IS (setup time) and t IH (hold time) required is calculated by adding the data sheet t IS (base) and t IH (base) values to the Δ^{t} IS and Δ^{t} IH derating values, respectively. Example: t IS (total setup time) = t IS (base) + Δ^{t} IS. For a valid transition, the input signal has to remain above/below $V_{IH(AC)}/V_{IL(AC)}$ for some time t VAC.

Although the total setup time for slow slew rates might be negative (for example, a valid input signal will not have reached $V_{IH(AC)}/V_{IL(AC)}$ at the time of the rising clock transition), a valid input signal is still required to complete the transition and to reach $V_{IH(AC)}/V_{IL(AC)}$.

Setup (t IS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of $V_{REF(DC)}$ and the first crossing of $V_{IH(AC)min}$. Setup (t IS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{REF(DC)}$ and the first crossing of $V_{IL(AC)max}$. If the actual signal is always earlier than the nominal slew rate line between the shaded $V_{REF(DC)}$ -to-AC region, use the nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between the shaded $V_{REF(DC)}$ -to-AC region, the slew rate of a tangent line to the actual signal from the AC level to the DC level is used for derating value.

Hold (${}^{t}IH$) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of $V_{IL(DC)max}$ and the first crossing of $V_{REF(DC)}$. Hold (${}^{t}IH$) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{IH(DC)min}$ and the first crossing of $V_{REF(DC)}$. If the actual signal is always later than the nominal slew rate line between the shaded DC-to- $V_{REF(DC)}$ region, use the nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between the shaded DC-to- $V_{REF(DC)}$ region, the slew rate of a tangent line to the actual signal from the DC level to the $V_{REF(DC)}$ level is used for derating value.

Table 12: Command and Address Setup and Hold Values Referenced at 1 V/ns - AC/DC-Based

Symbol	gDDR3-1600	gDDR3-1800	gDDR3-2000	Unit	Reference
^t IS (base) AC175	65	45	_	ps	V _{IH(AC)} /V _{IL(AC)}
^t IS (base) AC150	190	170	_	ps	$V_{IH(AC)}/V_{IL(AC)}$
^t IS (base) AC135	_	_	65	ps	V _{IH(AC)} /V _{IL(AC)}
^t IS (base) AC125	_	_	150	ps	V _{IH(AC)} /V _{IL(AC)}
^t IH (base) DC100	140	120	100	ps	V _{IH(DC)} /V _{IL(DC)}

2Gb: x16 gDDR3 SDRAM Graphics Addendum Data Setup, Hold, and Derating

Data Setup, Hold, and Derating

The total ^tDS (setup time) and ^tDH (hold time) required is calculated by adding the data sheet ^tDS (base) and ^tDH (base) values to the Δ^t DS and Δ^t DH derating values, respectively. Example: ^tDS (total setup time) = ^tDS (base) + Δ^t DS. For a valid transition, the input signal has to remain above/below $V_{IH(AC)}/V_{II,(AC)}$ for some time ^tVAC.

Although the total setup time for slow slew rates might be negative (for example, a valid input signal will not have reached $V_{IH(AC)}/V_{IL(AC)}$) at the time of the rising clock transition), a valid input signal is still required to complete the transition and to reach $V_{IH}/V_{IL(AC)}$.

Setup (${}^{t}DS$) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of $V_{REF(DC)}$ and the first crossing of $V_{IH(AC)min}$. Setup (${}^{t}DS$) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{REF(DC)}$ and the first crossing of $V_{IL(AC)max}$. If the actual signal is always earlier than the nominal slew rate line between the shaded $V_{REF(DC)}$ -to-AC region, use the nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between the shaded $V_{REF(DC)}$ -to-AC region, the slew rate of a tangent line to the actual signal from the AC level to the DC level is used for derating value.

Hold (${}^{t}DH$) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of $V_{IL(DC)max}$ and the first crossing of $V_{REF(DC)}$. Hold (${}^{t}DH$) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{IH(DC)min}$ and the first crossing of $V_{REF(DC)}$. If the actual signal is always later than the nominal slew rate line between the shaded DC-to- $V_{REF(DC)}$ region, use the nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between the shaded DC-to- $V_{REF(DC)}$ region, the slew rate of a tangent line to the actual signal from the DC-to- $V_{REF(DC)}$ region is used for derating value.

Table 13: Data Setup and Hold Values at 1 V/ns (DQS, DQS# at 2 V/ns) - AC/DC-Based

Symbol	gDDR3-1600	gDDR3-1800	gDDR3-2000	Unit	Reference
^t DS (base) AC175	_	_	_	ps	V _{IH(AC)} /V _{IL(AC)}
^t DS (base) AC150	30	10	_	ps	V _{IH(AC)} /V _{IL(AC)}
^t DS (base) AC135	60	40	68	ps	V _{IH(AC)} /V _{IL(AC)}
^t DH (base) DC100	65	45	70	ps	V _{IH(DC)} /V _{IL(DC)}

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 www.micron.com/productsupport Customer Comment Line: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for DRAM category:

Click to view products by Micron manufacturer:

Other Similar products are found below:

AS4C16M32MD1-5BCN MT47H128M8JN-3 IT:H TR MT47H64M8JN-25E:G TR HM514100AZ-80 IS42VM16400M-75BLI

AS4C16M32MD1-5BIN AS4C64M8D1-5TCN MN41C4256A-07 IS43LR16800G-6BLI EDW4032BABG-70-F-D W97AH2KBQX2I

W971GG8SB-25 W9712G6KB-25 W968D6DAGX7I W949D2DBJX5I W949D2DBJX5E MT46H64M32LFBQ-48 WT:C

MT48LC16M16A2B4-6A AIT:G MT48LC2M32B2B5-6A IT:J S27KL0641DABHI020 DEMT46H128M16LFCK6ITA

MT46H128M16LFDD-48 IT:C MT46H64M32LFBQ-48 IT:C W631GG6KB15I W949D6DBHX5I W94AD2KBJX5I W972GG6KB-25 TR

W9751G6KB25I W9751G6KB25I TR W97AH2KBVX2I S27KL0641DABHB020 IS43LD16640C-25BLI AS4C64M16D1A-6TCN

S27KL0641DABHV020 AS4C256M8D2-25BIN AS4C64M8D1-5BCN S27KS0641DPBHV020 MT52L256M32D1PF-093 WT:B TR

AS4C64M16MD2-25BCN AS4C128M16MD2-25BCN AS4C8M16D1-5BCN AS4C64M32MD2-25BCN AS4C128M16MD2A-25BIN

AS4C128M32MD2-18BCN AS4C32M32MD2-25BCN IS43LR16800G-6BL S27KS0641DPBHI023 MT53E256M32D2DS-053 WT:B

W631GG6MB12I S70KS1281DPBHV020