

Technical Note

Transitioning Designs From DDR3 8Gb SDP 1CS to 8Gb DDP 1CS

Introduction

This technical note explains how to migrate a PCB design that uses a Micron 8Gb DDR3L product from a 90 series single-die 96-ball package to a 100 series dual-die 96-ball package.

For complete specifications, see the data sheet for each device. This technical note does not include memory controller firmware changes required to move from the single-die package (SDP) to the dual-die package (DDP). Customers are advised to resimulate the system for signal integrity (SI) confirmation.

The following table shows the single-die and dual-die part numbers and essential differences between the devices.

Table 1: DDR3L Device Details

	Device			
Architecture	MT41K512M16HA (SDP)	MT41K512M16VRN (DDP), MT41K512M16VRP (DDP)		
Die configuration	64 Meg x 16 x 8 banks	64 Meg x 8 x 8 banks		
Density per package	8Gb	8Gb		
Die per package	1	2		
Ranks (CS_n)	1	1		
Refresh count	8K	8K		
Row address	A[15:0]	A[15:0]		
Bank address	BA[2:0]	BA[2:0]		
Column address	A[9:0]	A[9:0]		
Page size/die	2KB	1KB		

Ball Assignments

Ballout and assignments are the same for the 8Gb DDR3L SDP and DDP devices; however, when replacing an SDP device with a DDP device on the same system board, we recommend resimulating the system and verifying all termination settings and values. A system firmware change to adjust the controller and DRAM DQ/DQS drive strength may be required depending on system SI simulation results.

For information on how to help verify these design changes and confirm SI, see Micron technical notes TN-41-13: Point to Point Design Support and TN-52-02: Point-to-Point System Design Layout and Routing Tips.

Block Diagrams

The block diagrams for the 8Gb DDR3L SDP and the DDP devices are shown in the figures below. Note that the DDP package has one internal RZQ resister and one ZQ pin out. External ballouts for both the SDP and DDP packages are the same.

Figure 1: Functional Block Diagram for 8Gb 1CS SDP (64 Meg x 16 x 8 Banks)

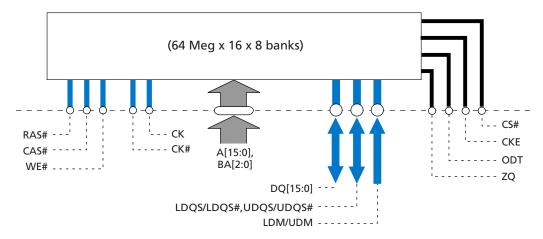
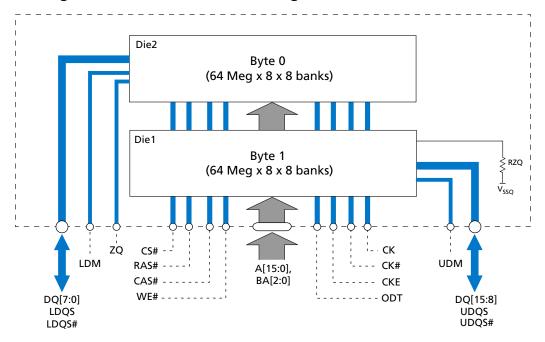
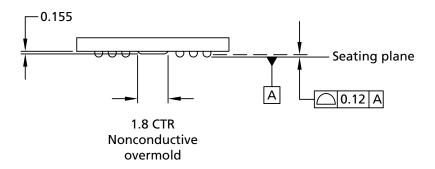
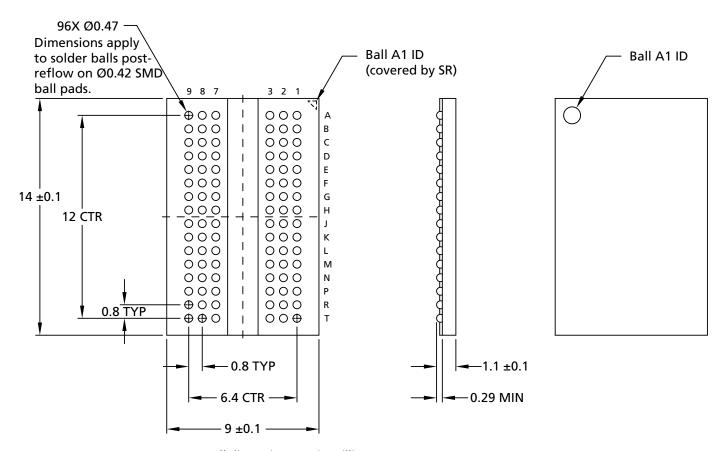



Figure 2: Functional Block Diagram for 8Gb 1CS DDP (2 x 64 Meg x 8 x 8 Banks)

TN-41-17: DDR3L MT41K512M16 SDP to DDP Migration Guide Package Dimensions

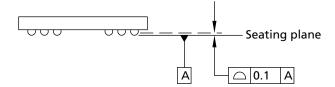
Package Dimensions

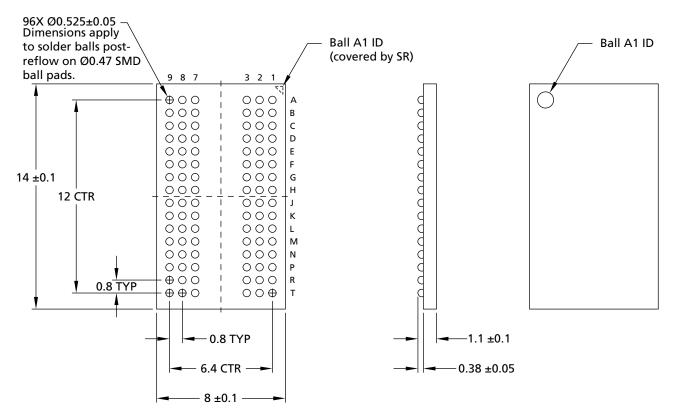

The package dimensions for the 8Gb DDR3L SDP and DDP devices are showed in the following figures, and the differences are summarized in the following table. The ball size increase for the DDP device is required to meet automotive solder join reliability (SJR) requirements. See Micron's customer service note CSN-33, a general BGA manufacturer's user guide, for information on how to easily integrate both leading-edge and legacy Micron ball grid array (BGA) packages into your manufacturing processes.


Table 2: Package Dimension Comparison

	Package (unit mm)				
Package Code	HA (SDP)	VRN (DDP) and VRP (DDP)			
Dimension	9 x 14	8 x 14			
Thickness (with ball)	1.1 ±0.1	1.1 ±0.1			
Solder ball	96 x Ø0.47	96 x Ø0.525 ±0.05			
SMD ball pad	Ø0.42	Ø0.47			
Ball height	0.29 MIN	0.381 ±0.05			

Figure 3: 8Gb SDP 96-Ball FBGA - x16 (HA)





Notes: 1. All dimensions are in millimeters.

2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu).

Figure 4: 8Gb DDP 96-Ball FBGA - x16 (VRN, VRP)

- Notes: 1. All dimensions are in millimeters
 - 2. VRN material composition: Pb-free SAC302 (96.8% Sn, 3% Ag, 0.2% Cu)
 - 3. VRP material composition: Pb-free SAC Q (92.45% Sn, 4% Ag, 0.5% Cu, 3% Bi, 0.05%)

TN-41-17: DDR3L MT41K512M16 SDP to DDP Migration Guide Electrical Specifications

Electrical Specifications

The differences in thermal impedance, input/output capacitance and electrical specifications between the 8Gb DDR3 SDP and DDP devices are shown in the respective device data sheets. However, when migrating from the 8Gb DDR3L SDP device to the DDP device there are timing changes that should be noted. These changes are shown in the following tables.

DDR3L 8Gb Timing Changes

Table 3: Configurations and Page Size

Parameter	8Gb SDP	8Gb DDP	
Die configuration	64 Meg x 16 x 8 banks	64 Meg x 8 x 8 banks	
Refresh count	8K	8K	
Row address	64K (A[15:0])	64K (A[15:0])	
Bank address	8 (BA[2:0])	8 (BA[2:0])	
Column address	1K (A[9:0])	1K (A[9:0])	
Die page size	2KB	1KB	

Table 4: Command Timing

Parameter	SDP (DDR3L-1866)		DDP (DDR3L-1866)		Unit	
rarameter	Symbol	Min	Мах	Min	Max	Unit
ACTIVATE-to-ACTIVATE minimum command period	^t RRD	MIN = greater	of 4CK or 6ns	MIN = greater	of 4CK or 5ns	CK or ns
Four ACTIVATE windows	^t FAW	35	_	27	_	ns

Table 5: REFRESH Timing

Parameter	Symbol	DDR3L-1866		Unit
		Min	Max	Oilit
REFRESH-to-ACTIVATE or REFRESH command period	^t RFC – 4Gb	260	70,200	ns
	^t RFC – 8Gb	350	70,200	ns

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000 www.micron.com/products/support Sales inquiries: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for DRAM category:

Click to view products by Micron manufacturer:

Other Similar products are found below:

CT51264BF160B M366S0924FTS-C7A00 AS4C16M32MD1-5BCN HM514100AZ-80 IS42VM16400M-75BLI K4S560432C-TC75

K4S641632H-UC60 AS4C16M32MD1-5BIN AS4C64M8D1-5TCN ATCA-7360-MEM-4G MN41C4256A-07 IS43LR16800G-6BLI

MT48LC8M16A2F4-6A IT:L DEMT46H128M16LFCK6ITA W972GG6KB-25 TR S27KL0641DABHB020 AS4C64M16D1A-6TCN

AS4C256M8D2-25BIN AS4C64M8D1-5BCN AS4C128M16MD2-25BCN AS4C8M16D1-5BCN AS4C64M32MD2-25BCN

AS4C128M16MD2A-25BIN AS4C128M32MD2-18BCN AS4C32M32MD2-25BCN IS43LR16800G-6BL MT52L512M32D2PF-107 WT:B

TR W971GG6SB-18 AS4C64M16D3B-12BINTR MT44K16M36RB-125E:A TR MT44K16M36RB-107E:A TR AS4C128M8D2A-25BIN

AS4C128M8D2A-25BCN MT40A256M16LY-062E:F NT5AD256M16D4-HR AS4C256M16D3C-93BCN AS4C128M16D3LC-12BIN

AS4C128M16D3LC-12BCN AS4C64M32MD1A-5BIN AS4C128M16D3LC-12BINTR MT40A512M8SA-062E:F TR IS45S32800J-7TLA2

AS4C256M16D3LC-12BCN IS66WVH32M8DALL-166B1LI AS4C16M16SB-6TIN AS4C16M16SB-7TCN K4B2G1646F-BCNB

AS4C2M32SA-6TINTR AS4C16M16SB-6BIN MT48LC64M8A2P-75:C TR