ULTRA－SMALL PACKAGE PWM／PFM SWITCHING CONTROL

 STEP－UP SWITCHING REGULATOR
Description ：

The ME2109 series is a CMOS step－up switching regulator which mainly consists of a reference voltage source，an oscillation circuit， an error amplifier，a phase compensation circuit， a PWM／PFM switching control circuit．With an external low－ON－resistance Nch Power MOS， this product is applicable to applications requiring high efficiency and high output current． The ME2109 series switches its operation to the PFM control circuit whose duty ratio is 15% with to the PWM／PFM switching control circuit under a light load and to prevent decline in the efficiency by IC operation current．

Selection Guide ：

Feature ：

I Low voltage operation：Start－up is guaranteed from $0.9 \mathrm{~V}(\mathrm{IOUT}=1 \mathrm{~mA})$
I Duty ratio：Built－in PWM／PFM switching control circuit 15 to 78 \％．
I oscillator frequency： 300 KHz
I External parts：coil，diode，capacitor，and transistor
I Output voltage range： $1.5 \mathrm{~V} \sim 6.5 \mathrm{~V}$
I Output voltage accuracy：$\pm 2 \%$
I Soft start function： 2 ms ．
I PACKAGE ：SOT－23－5

Typical Application：

I Mobile phones（PDC，GSM，CDMA，IMT200 etc．）
I Bluetooth equipment
I PDA
I Portable communication modem
I Portable games
I Cameras
I Digital cameras
I Cordless phones
I Notebook computers

TYPE	POSTFIX	PACKAGE	SWITCHING TRANSISTOR	CE FUNCTION	VDD FUNCTION	FB FUNCTION	FEATURES
ME2109Dxx	M5	SOT23－5	External Transistor	Yes	Yes	No	Ext＋CE
ME2109F	M5	SOT23－5	External Transistor	Yes	Yes	Yes	Ext＋FB

Pin Configuration ：

SOT－23－5

Pin information ：

ME2109Dxx ：

Pin Number	Pin Name	Function
SOT－23－5	VOUT	Output voltage pin
1	VDD	IC power supply pin
2	CE	Shutdown pin
3	GND	GND pin
4	EXT	External transistor connection pin
5		

ME2109F ：

Pin Number	Pin Name	Function
SOT－23－5	FB	Feed Back voltage pin
1	VDD	IC power supply pin
2	CE	Shutdown pin
3	GND	GND pin
4	EXT	External transistor connection pin
5		

Block Diagram ：

Absolute Maximum Rang ：

PARAMETER	SYMBOL	RATINGS	UNITS
VDD Pin Voltage	VDD	$-0.3 \sim 6.5$	V
EXT Pin Voltage	EXT	$-0.3 \sim$ VDD +0.3	V
VOUT Pin Voltage	VOUT	$-0.3 \sim 6.5$	V
CE Pin Voltage	VCE	$-0.3 \sim \mathrm{Vin}+0.3$	V
EXT Pin Voltage	IEXT	± 1000	mA
Power Dissipation（SOT－23－5）	Pd	250	mW
OperatingTemperature Range	$\mathrm{T}_{\text {Opr }}$	$-25 \sim+85$	${ }^{\circ} \mathrm{C}$
StorageTemperature Range	$\mathrm{T}_{\text {stg }}$	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$

Electrical Characteristics :

ME2109D535
Measuring conditions :VIN=VOUT(S)X0.6,IOUT=100mA,VCE=VDD=VOUT ,Topt= $25^{\circ} \mathrm{C}$ 。Unless otherwise specified。

Parameter	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	CIRCUIT
Output voltage	VOUT	-		$\begin{array}{\|c\|} \mid \operatorname{VOUT}(S) X \\ 0.98 \end{array}$	VOUT(S)	$\left\lvert\, \begin{gathered} \mathrm{VOUT}(\mathrm{~S}) \mathrm{X} \\ 1.02 \end{gathered}\right.$	V	2
Input voltage	VIN	-		-	-	6	V	2
Operation start voltage	VST1	IOUT $=1 \mathrm{~mA}$		-	-	0.9	V	2
Oscillation start voltage	VST2	No external parts, voltage applied to VOUT		-	-	0.7	V	1
Operation holding voltage	VHLD	IOUT $=1 \mathrm{~mA}$, Measured by decreasing VIN voltage gradually		0.7	-	-	V	2
Current consumption 1	ISS1	VOUT $=\operatorname{VOUT}(\mathrm{S}) \times 0.95$		-	200	-	uA	2
Current consumption 2	ISS2	VOUT=VOUT(S)+0.5V		-	20	-	uA	2
Current consumption during shutdown	ISSS	VCE=0V		-	0.1	0.5	uA	2
EXT pin output current	IEXTH	VEXT=VOUT-0.4V		-	-35	-	mA	2
	IEXTL	$\mathrm{VEXT}=0.4 \mathrm{~V}$		-	55	-	mA	2
Line regulation	\triangle VOUT1	VIN=VOUT(S) $\times 0.4 \sim \times 0.6$		-	30	-	mV	2
Load regulation	\triangle VOUT2	IOUT=10uA ~VOUT/50×1.25		-	35	-	mV	2
Output voltage temperature coefficient		$\mathrm{Ta}=-25-85^{\circ} \mathrm{C}$		-	± 50	-	ppm/ $/{ }^{\circ} \mathrm{C}$	2
Oscillation frequency	fosc	-		255	300	345	kHz	1
Max. duty ratio	MAXDUTY	VOUT=VOUT(S) $\times 0.95$		-	78	-	\%	1
PWM/PFM switching duty ratio	PFMDUTY	VIN=VOUT(S)-0.1V, no load		-	15	-	\%	1
Shutdown pin input voltage	VSH	Measured the oscillation at EXT pin		0.75	-	-	V	1
	VSL1	Judged the stop of oscillation at EXT pin	VOUT $\geq 1.5 \mathrm{~V}$	-	-	0.3	V	1
	VSL2		VOUT<1.5V	-	-	0.2	V	1
Shutdown pin input voltage	ISH	VCE $=\operatorname{VOUT}(\mathrm{S}) \times 0.95$		-0.1	-	0.1	uA	1
	ISL	$\mathrm{VCE}=0 \mathrm{~V}$		-0.1	-	0.1	uA	1
Soft start time	tss	-			2		mS	2
Efficiency	EFFI	-			85		\%	2

ME2109F
Measuring conditions : VDD $=$ VVCE $=3.3 \mathrm{~V}$, $\mathrm{Topt}=25^{\circ} \mathrm{C}$ 。Unless otherwise specified。

Parameter	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	CIRCUIT
Feed back voltage	VOUT	-		1.225	1.25	1.275	V	4
Input voltage	VIN	-			-	6	V	4
Operation start voltage	VST1	IOUT $=1 \mathrm{~mA}$		-	-	0.9	V	4
Oscillation start voltage	VST2	No external parts, voltage applied to VOUT		-	-	0.7	V	3
Operation holding voltage	VHLD	IOUT=1mA , Measured by decreasing VIN voltage gradually		0.7	-	-	V	4
Current consumption 1	ISS1	VFB $=\mathrm{VFB}(\mathrm{S}) \times 0.95-$		-	100	-	uA	3
Current consumption 2	ISS2	$\mathrm{VFB}=1.5 \mathrm{~V}$		-	15	-	uA	3
Current consumption during shutdown	ISSS	VCE=0V		-	0.01	0.5	uA	3
EXT pin output current	IEXTH	VEXT=VOUT-0.4V		-	-25	-	mA	3
	IEXTL	VEXT $=0.4 \mathrm{~V}$		-	40	-	mA	3
Feed back voltage temperature coefficient		$\mathrm{Ta}=-25-85^{\circ} \mathrm{C}$		-	± 50	-	ppm/ $/{ }^{\circ} \mathrm{C}$	4
Oscillation frequency	fosc	-		255	300	345	kHz	3
Max. duty ratio	MAXDUTY	$\mathrm{VFB}=\mathrm{VFB}(\mathrm{S}) \times 0.95$		-	78	-	\%	3
PWM/PFM switching duty ratio	PFMDUTY	$\mathrm{VFB}=\mathrm{VFB}(\mathrm{S}) \times 1.5$, no load		-	15	-	\%	3
Shutdown pin input voltage	VSH	Measured the oscillation at EXT pin		0.75	-	-	V	3
	VSL1	Judged the stop of oscillation at EXT pin	VOUT $\geq 1.5 \mathrm{~V}$	-	-	0.3	V	3
	VSL2		VOUT<1.5V	-	-	0.2	V	3
Shutdown pin input voltage	ISH	VCE $=$ VFB $(\mathrm{S}) \times 0.95$		-0.1	-	0.1	uA	3
	ISL	VCE $=0 \mathrm{~V}$		-0.1	-	0.1	uA	3
Soft start time	tss	-		-	2	-	mS	4
Efficiency	EFFI	-		-	85	-	\%	4

1. $\operatorname{VOUT}(\mathrm{S})$ is the set output voltage value, and VOUT is the typital value of the output voltage.
2. $\operatorname{VOUT}(\mathrm{S})$ can be set by using the rate of VFB and output voltage setting resisitors(R1,R2).
3. $\mathrm{VFB}(\mathrm{S})$ is the set output voltage value.
4. VDD/VOUT separate type:
$1.8 \mathrm{~V} \leqq \mathrm{VDD}<6 \mathrm{~V}$ is recommended to stabilize the output voltage and oscillation frequency.

Test Circuit ：

1.

2.

3.

4.

External parts（suggest）：

1，Diode use Schottky diode such as IN5817 or IN5819（forward voltage drop：0．2V）
2，Inductor： 22 H （r＜0．5 ）
3，Capacitor ：Tantalum type 47uF
4，Feed back resistors：R1＋R2＜50K

External parts selection for DC／DC converter：

The relationship between major characteristics of the step－up circuit and characteristics parameters of the external parts are shown in Figure 1.

Figure 1 Relationship between major characterstics of the step－up circuit and external parts
1．Inductor
An inductance has strong influence on maximum output current IOUT and efficiency η ． 1 ．
Figure 2 shows the relation between IOUT，and η characteristics to L of ME2109．

Figure 2 L －Iout and η characteristics

The peak current（IPK）increases by decreasing L and the stability of a circuit improves and IOUT increases．If L is furthermore made small，efficiency falls and in running short，IOUT decreases．（Based on the current drive capability of external switching transistor．）

The loss of IPK by the switching transistor decreases by increasing Land the efficiency becomes maximum at a certain L value．Further increasing L decreases efficiency due to the loss of DC resistance of the coil．Also，IOUT decreases，too．

Oscillation frequency is higher，smaller one can be choosed and also makes coil smaller．The recommended inductances are 22 to $100 \mu \mathrm{H}$ inductor for ME2109．

Choose a value for L by refering to the reference data because the maximum output current is due to the input voltage in an actual case．Choose an inductor so that IPK does not exceed the allowable current．Exceeding the allowable current of the inductor causes magnetic saturation，remarkable low efficiency and destruction of the IC chip due to a large current．

IPK in uncontinuous mode is caluculated from the following equatuon

$$
I_{P K}=\sqrt{\frac{2 I_{\text {OUT }}\left(V_{\text {OUT }}+V_{D}-V_{I N}\right)}{f_{O S C} \cdot L}}(A)
$$

fosc＝oscillation frequency，Vd 0.4 V ．
2．Diode
Use an external diode that meets the following requirements：
－Low forward voltage：（ $\mathrm{V} \subset<0.3 \mathrm{~V}$ ）
－High switching speed：（50 ns max．）
－Reverse voltage：Vout＋Vf or more
－Rated current：Ipk or more

3．Capacitor（Cin，Co）

A capacitor at the input side（CIN）improves the efficiency by reducing the power impedance and stabilizing the input current．Select a CIN value according to the impedance of the power supply used．

A capacitor at the output side（Co）is used for smoothing the output voltage．For step－up types，the output voltage flows intermittently to the load current so that step－up types need a larger capacitance than step－down types． Therefore，select an appropriate capacitor depending on the ripple voltage that increases in case of a higher output voltage or a higher load current．The capacitor value should be $10 \mu \mathrm{~F}$ minimum．
Select an appropriate capacitor with an ESR（Equivalent Series Resistance）for stable output voltage．A stable range of the volatge at this IC depends on the ESR．Although the inductance（L）is also a factor，an ESR of 30 m to 500 m draws out the characteristics．However，the best ESR may depend on L，capacitance，wiring and applications（output load）．Therefore，fully evaluate ESRs under an actual condition to determine the best value．

4．Enhancement MOS FET type

For a MOS FET，an N－channel power MOS FET should beused．Because the gate voltage and current of the external power MOS FET are supplied from the stepped up output voltage VOUT，the MOS FET is driven more effectively．Depending on the MOS FET you use in your device，there is a chance of a current overrun at power ON．Thoroughly test all settings with your device before deciding on which one to use．Also，try to use a MOS FET with the input capacitance of 700 pF or less．

Since the ON resistor of the MOS FET might depend on the difference between the output voltage Vout and the threshold voltage of MOS FET，and affect the output current as well as the efficiency，the threshold voltage should
be low．When the output voltage is low，the circuit operates only when the MOS FET has the threshold voltage lower than the output voltage．

5．Precautions ：

－Mount external capacitors，a diode，and a coil as close as possible to the IC．
－Unique ripple voltage and spike noise occur in switching regulators．Because they largely depend on the coil and the capacitor used，check them using an actually mounted model．
－Make sure dissipation of the switching transistor（especially at a high temperature）does not exceed the allowable power dissipation of the package．
－The performance of this IC varies depending on the design of the PCB patterns，peripheral circuits and external parts．Thoroughly test all settings with your device．Also，try to use recommended external parts．

Typical Application Circuit

For use external transistor 1

For FB and external 1

For use external transistor 2

For FB and external 2

Typical Performance Characteristics

1．Output Waveforms

lout $=1 \mathrm{~mA}$

lout＝100mA
2．Transient Response characteristics
（1）Powering ON（Vin： $0 \rightarrow 2 \mathrm{~V}$ ）

lout $=1 \mathrm{~mA}$

lout $=10 \mathrm{~mA}$

lout $=200 \mathrm{~mA}$

lout $=100 \mathrm{~mA}$

lout=1mA

lout $=100 \mathrm{~mA}$
3. Output Current vs. Output Voltage

4. Output Current vs. Efficiency

Package Dimensions ：

The information described herein is subject to change without notice．
－Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties，patents，or other rights belong to third parties．The application circuit examples explain typical applications of the products，and do not guarantee the success of any specific mass－production design．
－Use of the information described herein for other purposes and／or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited．
－The products described herein cannot be used as part of any device or equipment affecting the human body，such as exercise equipment，medical equipment，security systems，gas equipment，or any apparatus installed in airplanes and other vehicles，without prior written permission of Nanjing Micro One Electronics Inc．
－Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability，the failure or malfunction of semiconductor products may occur． The user of these products should therefore give thorough consideration to safety design， including redundancy，fire－prevention measures，and malfunction prevention，to prevent any accidents，fires，or community damage that may ensue．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Micro One manufacturer:
Other Similar products are found below :
LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH AP3844CMTR-E1 NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG NCP81101BMNTXG NCP81205MNTXG CAT87480ULGT3 SJE6600 AZ7500BMTR-E1 IR35215MTRPBF SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C IR35201MTRPBF AP3842CMTR-E1 NCP1247AD065R2G NCP1015ST65T3G NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG TEA19362T/1J NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1256ASN65T1G NCP1251FSN65T1G NCP1246BLD065R2G MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365AABCYDR2G

