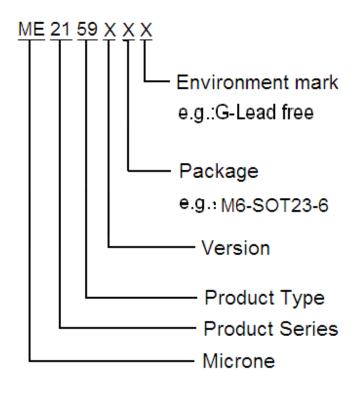


1A Step-Up Current Mode PWM Converter ME2159

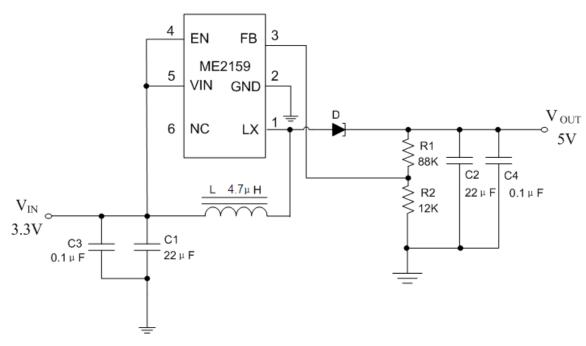

General Description

The ME2159 is a current mode boost DC-DC converter. Its PWM circuitry with built-in 0.18Ω power MOSFET make this regulator highly power efficient. The internal compensation network also minimizes as much as 6 external component counts. The non-inverting input of error amplifier connects to a 0.6V precision reference voltage and internal soft-start function can reduce the inrush current.

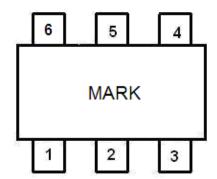
Features

- Precision Feedback Reference Voltage: 0.6V
- Reference Voltage accuracy: ±2%
- Adjustable Output up to 12V
- Internal Fixed PWM frequency: 650KHz
- Internal 0.18Ω ,2A, 16V Power MOSFET
- Shutdown Current: 0.1µA
- Over Temperature Protection:165℃
- Package: SOT23-6

Selection Guide


Applications

- Chargers
- LCD Displays
- Digital Cameras
- Handheld Devices
- Portable Products


V02 Page 1 of 9

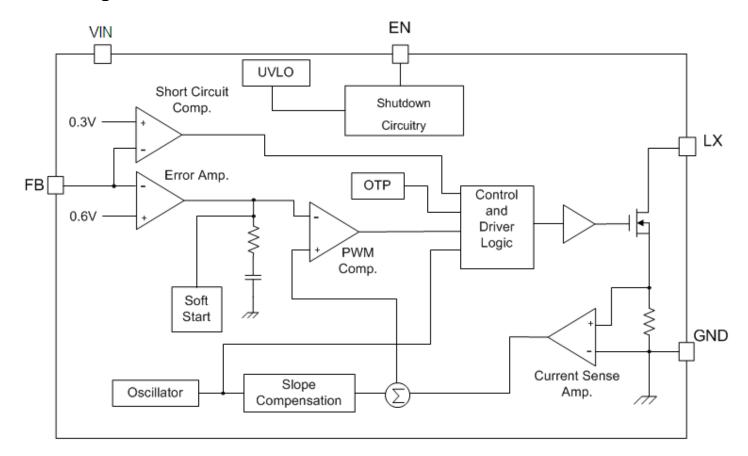
Typical Application

Pin Configuration

Pin informat

SOT23-6

Pin Number	Name	Function		
1	LX	Power Switch Output		
2	GND	Ground		
3	FB	Feedback		
4	EN	Chip Enable(Active High)		
5	VIN	Power Supply		
6	NC	NC		


V02 Page 2 of 9

Absolute Maximum Ratings

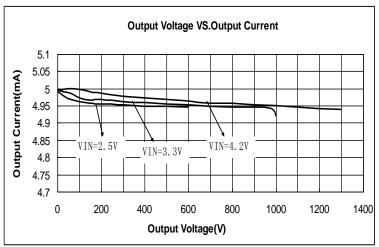
Parameter	Symbal	Rating	Unit
Power supply voltage, V _{IN}	V _{IN}	-0.3~6.0	V
voltage at EN、FB Pin	V_{EN}, V_{FB}	-0.3~V _{IN}	V
voltage at SW Pin	V_{LX}	-0.3~12	V
LX Pin Current	I _{LX}	2100	mA
Internal Power Dissipation, (SOT23-6)	P_D	300	mW
Operating Ambient Temperature	T _{opr}	-40~85	°C
Storage Temperature	T_{stg}	-40~+150	°C
Soldering temperature and time	T _{solder}	260°C, 10S	°C

Block Diagram

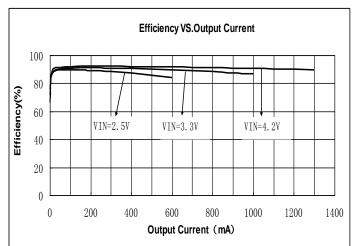
V02 Page 3 of 9

Electrical Characteristics

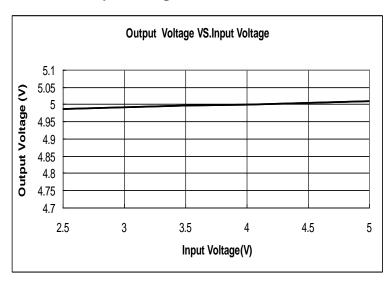
 $(\,V_{IN}=V_{EN}\!=\!3.3V,\,V_{OUT}\!=\!5V,\,C1\!=\,C2\!=\,22\mu\text{F},\,L\!=\!4.7\mu\text{H},\,T_{A}=\!25\,\,^{\circ}\text{C},\,unless\,\,otherwise\,\,noted.\,)$

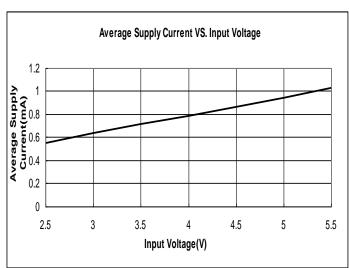

Parameter	Symbol	Test condition	Min	Тур.	Max	Unit	
System Supply Input		,	1				
Input voltage range	V _{IN}		2.5	-	5.5	V	
Under Voltage Lockout	V _{UVLO}			2.15		V	
UVLO Hysteresis				0.08		V	
Average Supply Current	I _{SS1}	V _{FB} =0.55V, Switching		0.8	1.5	mA	
Quiescent Current	lss2	V _{FB} =0.66V, No Switching		280		μA	
Shutdown Supply Current	I _{SS3}	V _{EN} =GND		0.1	5	μΑ	
Oscillator							
Operation Frequency	Fosc	V _{FB} =1.0V	0.5	0.65	0.8	MHz	
Maximum Duty Cycle	D _{MAX}			90		%	
Minimum Duty Cycle	D _{MIN}			22		%	
Reference Voltage							
Reference Voltage	V _{FB}		0.588	0.6	0.612	V	
Line Regulation		V _{IN} =2.6V to 4.3V		0.03		%/V	
Enable Control							
Enable Voltage	V _{EN}		1.5			V	
Shutdown Voltage	V _{EN}		-		0.6	V	
MOSFET			•				
On Resistance of Driver	R _{DS (ON)}	I _{LX} =2A		0.18		Ω	
Protection			•	1		,	
OCP Current	I _{OCP}			2	2.1	А	
Over Temperature Protection	ОТР		-	165	-	°C	
OTP Hysteresis	ОТН		-	25	-	°C	

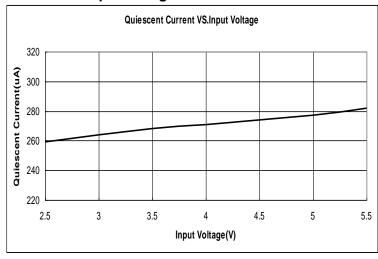
V02 Page 4 of 9

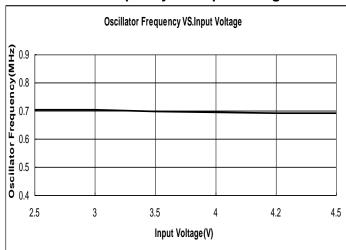


Typical Performance Characteristics


1. Output Voltage VS. Output Current (Vout =5.0V)


2. Efficiency VS. Output Current (Vout=5.0V)


3、V_{OUT} VS. Input Voltage (I_{OUT}=10mA)


4、I_{SS1} VS. Input Voltage

5、ISS2 VS. Input Voltage

6. Oscillator Frequency VS. Input Voltage

V02 Page 5 of 9

Function Description

Operation

The ME2159 is a current mode boost converter. The constant switching frequency is 1MHz and operates with pulse width modulation (PWM). Build-in 16V / 2A MOSFET provides a high output voltage. The control loop architecture is peak current mode control; therefore slope compensation circuit is added to the current signal to allow stable operation for duty cycles larger than 50%.

Soft Start Function

Soft start circuitry is integrated into ME2159 to avoid inrush current during power on. After the IC is enabled, the output of error amplifier is clamped by the internal soft-start function, which causes PWM pulse width increasing slowly and thus reducing input surge current.

Over Temperature Protection (OTP)

The ME2159 will turn off the power MOSFET automatically when the internal junction temperature is over 150° C. The power MOSFET wake up when the junction temperature drops 30° C under the OTP threshold temperature.

Output Disconnect

When power on and the EN pin will be pulled high. The ME2159 start up and operates. The external PMOS is turned on and current through it for output loading. While output loading is increase, output voltage is drop. When the FB pin voltage is under 0.3V, the EN pin sinks 20µA current, the external PMOS will be turn off. The output short condition will be disconnected.

Application Information

Inductor Selection

Inductance value is decided based on different condition. 3.3uH to 4.7µH inductor value is recommended for general application circuit. There are three important inductor specifications, DC resistance, saturation current and core loss. Low DC resistance has better power efficiency. Also, it avoids inductor saturation which will cause circuit system unstable and lower core loss at 1MHz.

Capacitor Selection

The output capacitor is required to maintain the DC voltage. Low ESR capacitors are preferred to reduce the output voltage ripple. Ceramic capacitor of X5R and X7R are recommended, which have low equivalent series resistance (ESR) and wider operation temperature range.

Diode Selection

Schottky diodes with fast recovery times and low forward voltages are recommended. Ensure the diode average

V02 Page 6 of 9

and peak current rating exceed the average output current and peak inductor current. In addition, the diode's reverse breakdown voltage must exceed the output voltage.

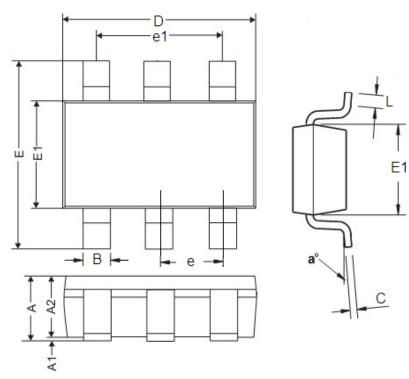
Output Voltage Programming

The output voltage is set by a resistive voltage divider from the output voltage to FB. The output voltage is:

$$V_{OUT} = 0.6 \times \left(1 + \frac{R_1}{R_2}\right)$$

PCB Layout Check List

When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the ME2159.


- 1. The power traces, consisting of the GND trace, the SW trace and the V_{IN} trace should be kept short, direct and wide.
- 2. LX L and D switching node, wide and short trace to reduce EMI.
- 3. Place CIN near VCC pin as closely as possible to maintain input voltage steady and filter out the pulsing input current.
- 4. The resistive divider R1and R2 must be connected to FB pin directly as closely as possible. the internal power MOSFETs.
- 5. FB is a sensitive node. Please keep it away from switching node, LX.
- 6. The GND of the IC, CIN and COUT should be connected close together directly to a ground plane.

V02 Page 7 of 9

Package Information

Package type:SOT23-6 Unit:mm(inch)

DIM	Millimeters		Inches		
	Min	Max	Min	Max	
А	0.9	1.45	0.0354	0.0570	
A1	0	0.15	0	0.0059	
A2	0.9	1.3	0.0354	0.0511	
В	0.2	0.5	0.0078	0.0196	
С	0.09	0.26	0.0035	0.0102	
D	2.7	3.10	0.1062	0.1220	
Е	2.2	3.2	0.0866	0.1181	
E1	1.30	1.80	0.0511	0.0708	
е	0.95REF		0.0374REF		
e1	1.90REF		0.0748REF		
L	0.10	0.60	0.0039	0.0236	
a ⁰	00	30 ⁰	00	30 ⁰	

V02 Page 8 of 9

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by Micro One manufacturer:

Other Similar products are found below:

FMD15.24G PSL486-7LR Q48T30020-NBB0 18362 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-1205 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 AK1601-9RT DPA423R VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH vi-m13-cw-03 VI-LN2-EW VI-PJW01-CZY CK2540-9ERT AK-1615-7R 700DNC40-CON-KIT-8G 350DNC40-CON-KIT-9G 088-101348-G VI-L52-EW VI-L53-CV PQA30-D48-S12-TH VI-L50-IY VI-LC63-EV AM2D-051212DZ 24IBX15-50-0ZG HZZ01204-G SPU02L-09 SPU02M-09 SPU02N-09 UNO-PS/350-900DC/24DC/60W QUINT4-BUFFER/24DC/20