微盟电子

Low Power Consumption LDO ME6209 Series

General Description

The ME6209 series are a group of positive voltage output，three－pin regulator，that provide a high current even when the input／output Voltage differential is small．Low power consumption and high accuracy is achieved through CMOS technology．They allow input voltages as high as 18 V ．

Features

－Ultra low quiescent current：3．0uA（typ）
－High input voltage（up to 18 V ）
－Low dropout voltage ： $80 \mathrm{mV} @ l o u t=40 \mathrm{~mA}$

$$
\left(\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}\right)
$$

－Output voltage accuracy：$\pm 2 \%$
－Maximum output current： 250 mA
（ within max．power dissipation， $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$ ）
－Low temperature coefficient
－Package：SOT23－3，TO－92，SOT89－3

Selection Guide

Typical Application

－Cameras，video recorders
－Voltage regulator for microprocessor
－Voltage regulator for LAN cards
－Wireless communication equipment
－Audio／Video equipment

Typical Application Circuit

Pin Configuration

Pin Assignment
ME6209AXX

Pin Number		Pin Name	Functions
SOT89－3／TO－92	SOT23－3		
1	1	$\mathrm{~V}_{\text {SS }}$	Ground
2	3	$\mathrm{~V}_{\text {IN }}$	Input
3	2	$\mathrm{~V}_{\text {OUT }}$	Output

Absolute Maximum Ratings

Parameter		Symbol	Ratings	Units
Input Voltage		$\mathrm{V}_{\text {IN }}$	18	V
Output Voltage		$\mathrm{V}_{\text {OUT }}$	Vss－0．3～V $\mathrm{V}_{\text {IN }}+0.3$	V
Output Current		lout	500	mA
Operating Temperature Range		TopR	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		$\mathrm{T}_{\text {STG }}$	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$
Power Dissipation	SOT89－3	PD	500	mW
	TO－92		500	
	SOT23－3		300	

Block Diagram

Electrical Characteristics

ME6209A33
$\left(\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {OUT }}+1.0 \mathrm{~V}, \mathrm{C}_{\mathbb{I N}=} \mathrm{C}_{\mathrm{L}}=10 \mathrm{uF}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted）

Parameter	Symbol	Conditions	Min．	Typ．	Max．	Units
Output Voltage	$V_{\text {out }}(E)$ （Note 2）	$\begin{gathered} \text { lout }=40 \mathrm{~mA}, \\ \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V} \end{gathered}$	X 0.98	Vout（T） （Note 1）	X 1.02	V
Input Voltage	$\mathrm{V}_{\text {IN }}$				18	V
Maximum Output Voltage	lout＿max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}$	250			mA
Load Regulation	$\Delta \mathrm{V}_{\text {OUT }}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}, \\ 1 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 60 \mathrm{~mA} \end{gathered}$		15	40	mV
Dropout Voltage （Note 3）	$\mathrm{V}_{\text {DIF }}$	lout $=40 \mathrm{~mA}$		80		mV
Supply Current	Iss	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}$		3	4	$\mu \mathrm{A}$
Line Regulations	$\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{V}_{\text {IN }} \times \mathrm{V}_{\text {OUT }}}$	$\begin{gathered} \text { lout }=40 \mathrm{~mA} \\ \mathrm{~V}_{\text {OUT }}+1 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 18 \mathrm{~V} \end{gathered}$		0.1	0.2	\％／V
$\triangle \mathrm{VOUT} / \triangle \mathrm{Ta}$	Temperature Coefficient	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}, \text { I Iout }=40 \mathrm{~mA} \\ \\ -40^{\circ} \mathrm{C}<\mathrm{Ta}<85^{\circ} \mathrm{C} \end{gathered}$		± 0.7		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

ME6209A40

$\left(\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {OUT }}+1.0 \mathrm{~V}, \mathrm{C}_{\mathbb{N}=} \mathrm{C}_{\mathrm{L}}=10 \mathrm{uF}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted）

Parameter	Symbol	Conditions	Min．	Typ．	Max．	Units
Output Voltage	Vout(E) （Note 2）	$\begin{gathered} \text { lout }=40 \mathrm{~mA}, \\ \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V} \end{gathered}$	X 0.98	Vout（T） （Note 1）	X 1.02	V
Input Voltage	$\mathrm{V}_{\text {IN }}$				18	V
Maximum Output Voltage	lout＿max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}$	250			mA
Load Regulation	$\Delta \mathrm{V}_{\text {OUT }}$	$\begin{gathered} \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}, \\ 1 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 60 \mathrm{~mA} \end{gathered}$		15	40	mV
Dropout Voltage （Note 3）	$\mathrm{V}_{\text {DIF }}$	$\mathrm{l}_{\text {OUt }}=40 \mathrm{~mA}$		70		mV
Supply Current	Iss	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}$		3	4	$\mu \mathrm{A}$
Line Regulations	$\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{V}_{\text {IN }} \times \mathrm{V}_{\text {OUT }}}$	$\begin{gathered} \text { lout }=40 \mathrm{~mA} \\ \mathrm{~V}_{\text {OUT }}+1 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 18 \mathrm{~V} \end{gathered}$		0.1	0.2	\％／V
$\triangle \mathrm{VOUT} / \triangle \mathrm{Ta}$	Temperature Coefficient	$\begin{gathered} \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1 \mathrm{~V}, \text { I IOUT }=40 \mathrm{~mA} \\ \\ -40^{\circ} \mathrm{C}<\mathrm{Ta}<85^{\circ} \mathrm{C} \end{gathered}$		± 0.7		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Note ：
1． $\mathrm{V}_{\text {Out }}(\mathrm{T})$ ：Specified Output Voltage
2． $\mathrm{V}_{\text {OUT }}(\mathrm{E})$ ：Effective Output Voltage（ie．The output voltage when＂ $\mathrm{V}_{\text {OUT }}(\mathrm{T})+1.0 \mathrm{~V}$＂is provided at the Vin pin while maintaining a certain Iout value．）
3． $\mathrm{V}_{\text {DIF }}: \mathrm{V}_{\text {IN } 1}-\mathrm{V}_{\text {OUT }}(\mathrm{E})$＇
$\mathrm{V}_{\text {IN1 }}$ ：The input voltage when $\mathrm{V}_{\text {Out }}(\mathrm{E})$＇appears as input voltage is gradually decreased．
$\mathrm{V}_{\text {OUt }}$（ E ）＇＝A voltage equal to 98% of the output voltage whenever an amply stabilized lout and $\left\{\mathrm{V}_{\text {OUT }}(\mathrm{T})+\right.$ 1.0 V \} is input.

Precautions

－During the test，if AC／DC power supply and the ceramic chip capacitors collocation are used，there may be serious voltage spike phenomenon instantaneously．When the power supply access to 16 V ，the voltage is rushed to about 30 V instantaneously．Because of exceeding the limit voltage of chip，the chip is damaged．If you string a small resistance of 1 ohm in the input end during the test，the peak phenomenon can be avoided．
－In the test，there is serious burr phenomenon only when the AC／DC power is used with ceramic chip capacitors．But electrolytic capacitors and tantalum capacitance won＇t appear above phenomenon．Please be sure to pay attention to this point when you use AC／DC power．
－In normal use，when any type of capacitor is used with battery or the supply of fire power，the above phenomenon doesn＇t occur．

Packaging Information：

－SOT23－3

DIM	Millimeters		Inches	
	Min	Max	Min	Max
A	2.7	3.1	0.1063	0.122
B	1.7	2.1	0.0669	0.0827
b	0.35	0.5	0.0138	0.0197
C	1.0	1.2	0.0394	0.0472
c	0.1	0.25	0.0039	0.0098
d	0.2	-	0.0079	-
E	2.6	3.0	0.1023	0.1181
e	1.5			0.0708

SOT89－3

DIM	Millimeters		Min	Max
	Min	Max	0.0551	0.0630
A	1.4	1.6	0.0551	0.0630
A1	1.4	1.6	0.0142	0.0189
a	0.36	0.48	0.0161	0.0209
b	0.41	0.53	0.0142	0.0189
c	0.36	0.48	0.0551	0.0689
d	1.4	1.75	0.015	0.0169
C	0.38	0.43	0.0551	0.0630
D	1.4	1.6	0.1732	0.181
E	-	4.4	-	0.1673
e	2.4	2.6	0.0945	0.1023
L1	0.4	-	0.0157	-
L2	0.8			0315

ME6209

TO－92

	Min	Max	Min	Max
A	3.4	3.8	0.13386	0.1496
B	0.3	0.5	0.0118	0.0197
C	4.4	4.8	0.1732	0.189
D	4.4	4.8	0.1732	0.189
E	0.9	1.5	0.0354	0.059
e	1.17	1.37	0.046	0.0539
e1	2.39	2.69	0.094	0.1059
L	12	16	0.4724	0.6299

－The information described herein is subject to change without notice．
－Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties，patents，or other rights belong to third parties． The application circuit examples explain typical applications of the products，and do not guarantee the success of any specific mass－production design．
－Use of the information described herein for other purposes and／or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited．
－The products described herein cannot be used as part of any device or equipment affecting the human body，such as exercise equipment，medical equipment，security systems，gas equipment，or any apparatus installed in airplanes and other vehicles，without prior written permission of Nanjing Micro One Electronics Inc．
－Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability，the failure or malfunction of semiconductor products may occur．The user of these products should therefore give thorough consideration to safety design，including redundancy， fire－prevention measures，and malfunction prevention，to prevent any accidents，fires，or community damage that may ensue．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LDO Voltage Regulators category:
Click to view products by Micro One manufacturer:
Other Similar products are found below :
AP7363-SP-13 L79M05TL-E AP7362-HA-7 PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF45,LM(CT TLE4473G V52 059985X NCP4687DH15T1G 701326R NCV8170AXV250T2G AP7315-25W5-7 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BXV330T2G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF TCR4DG35,LF TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF MPQ2013AGG-5-P NCV8170AMX360TCG TLE4268GSXUMA2 NCP715SQ15T2G MIC5317-3.0YD5-T5 NCV563SQ18T1G NCP715MX30TBG NCV8702MX25TCG NCV8170BXV120T2G MIC5317-1.2YD5-T5 NCV8170AMX150TCG NCV8170BMX150TCG AP2213D-3.3TRG1 NCV8170BMX120TCG NCV8170BMX310TCG NCV8170BMX360TCG

