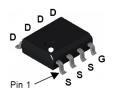


P-Channel MOSFET MEM2309S

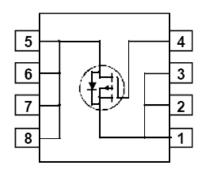
Description:

MEM2309SG Series P-channel enhancement mode field-effect transistor ,produced with high cell density DMOS trench technology, which is especially used to minimize on-state resistance.

This device particularly suits low voltage applications, and low power dissipation.


Feature:

• -30V/-6A


 $R_{DS(ON)} = 53m\Omega @ V_{GS} = -10V, I_D = -6A$

 $R_{DS(ON)}$ =68m Ω @ V_{GS} =-4.5V, I_D =-4A

- High Density Cell Design For Ultra Low On-Resistance
- Surface mount package:SOP8

Pin Configuration:

Typical Application:

- Power management
- Load switch
- Battery protection

Absolute Maximum Ratings:

Parameter		Symbol	Ratings	Unit	
Drain-Source Voltage		V_{DSS}	-30V	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current	T _A =25℃	,	-6	Λ	
	T _A =70°C	I _D	-3.2	Α	
Pulsed Drain Current ^{1,2}		I _{DM}	-30	Α	
Total Power Dissipation	T _A =25℃	Pd	2	W	
	T _A =70°C	Fu	0.8		
Operating Temperature Range		T_{Opr}	150	$^{\circ}$	
Storage Temperature Range		T _{stg}	-65/150	$^{\circ}$	

Thermal Characteristics:

Parameter	Symbol	Ratings	Unit	
Thermal Resistance, Junction-to-Ambient ³	RθJA	50	°C/W	

Electrical Characteristics:

MEM2309SG

Parameter	Symbol	Test Condition	Min	Туре	Max	Unit		
Static Characteristics								
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =-250uA	-30	-34		V		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = -250uA$	-1.1	-1.3	-2	٧		
Cata Pady Lagkage	I _{GSS}	V_{DS} =0V, V_{GS} =20V		5	30	nA		
Gate-Body Leakage		V_{DS} =0V, V_{GS} =-20V		-5	-30	nA		
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-24V V_{GS} =0V		-6	-300	nA		
Static Drain-Source On-Resistance	R _{DS(ON)1}	V _{GS} =-10V,I _D =-6A	33	53	65	mΩ		
	R _{DS(ON)2}	V _{GS} =-4.5V,I _D =-4A	50	68	80	mΩ		
Forward Transconductance	g _{FS}	$V_{DS} = -5 \text{ V},$ $I_{D} = -5.3 \text{ A}$		10		S		
Drain-Source Diode Forward Current	Is				-2.1	Α		
Source-drain (diode forward) voltage	V _{SD}	V _{GS} =0V,I _S =-1A		-0.8	-1.2	٧		
Dynamic Characteristics								
Input Capacitance	Ciss	$V_{DS} = -15V$,		530				
Output Capacitance	Coss	$V_{GS} = 0 V$		140		pF		
Reverse Transfer Capacitance	Crss	f = 1 MHz		70				
Switching Characteristics								
Turn-On Delay Time	td(on)	$V_{DD} = -15 \text{ V},$		8	15			
Rise Time	tr	$I_{D}=-1 A, V_{GEN}=-10 V,$		15	25	ns		
Turn-Off Delay Time	td(off)			15	25			
Fall-Time	tf	Rg = 6 Ω		10	15			
Total Gate Charge	Qg	$V_{DS} = -15 \text{ V},$		10	15			
Gate-Source Charge	Qgs	$V_{GS} = -10 \text{ V},$		2.2		nc		
Gate-Drain Charge	Qgd	$I_D = -4A$	-	2.0	-			

- 1. Repetitive rating, pulse width limited by junction temperature.
- 2. Pulse test; pulse width ≤300 us, duty cycle ≤2%.
- 3、Surface Mounted on FR4 Board, t ≤ 10 sec.

Typical Performance Characteristics:

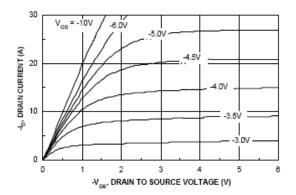


Figure 1. On-Region Characteristics.

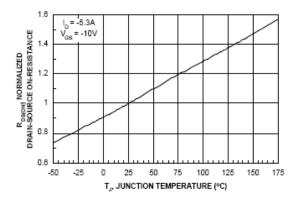


Figure 3. On-Resistance Variation with Temperature.

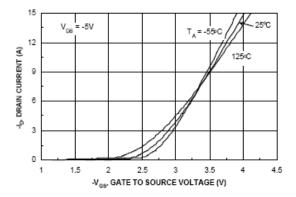


Figure 5. Transfer Characteristics.

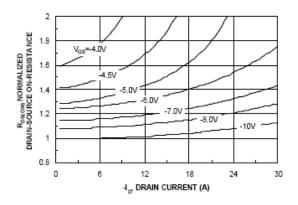


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

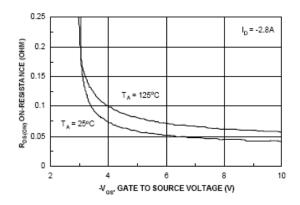


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

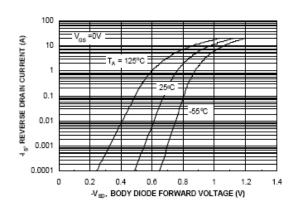



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

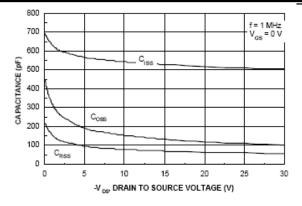


Figure 7. Gate Charge Characteristics.

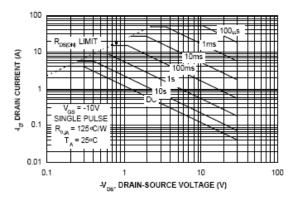


Figure 8. Capacitance Characteristics.

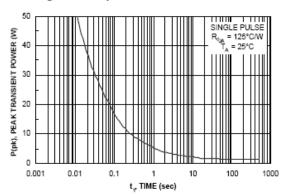
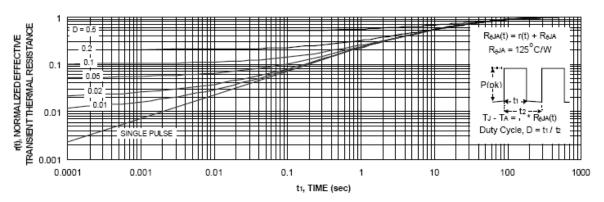
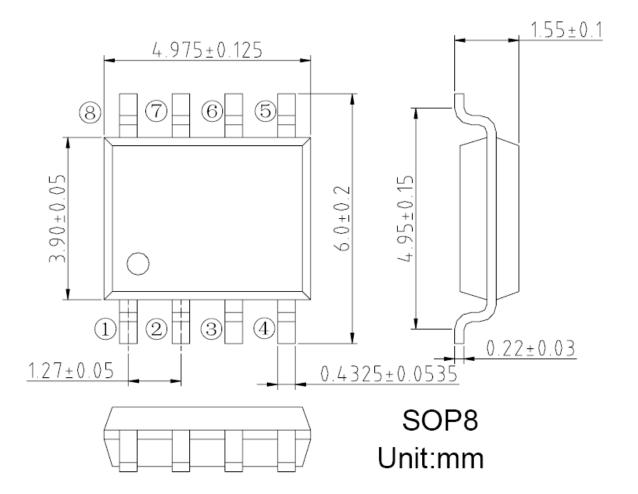


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.




Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

V6.0 <u>www.microne.com.cn</u> 4

Package Information:

6

- · The information described herein is subject to change without notice.
- · Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality
 and reliability, the failure or malfunction of semiconductor products may occur. The user of these
 products should therefore give thorough consideration to safety design, including redundancy,
 fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community
 damage that may ensue.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Micro One manufacturer:

Other Similar products are found below:

614233C 648584F FDPF9N50NZ IRFD120 IRFF430 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2267(Q) 2SK2545(Q,T)
405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C PSMN4R2-30MLD

TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7

NTE2384 NTE2969 NTE6400A DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B

IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7

BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IPS60R1K0PFD7SAKMA1 IPS60R360PFD7SAKMA1

IPS60R600PFD7SAKMA1 IPS60R210PFD7SAKMA1 DMN2990UFB-7B