

## TECHNICAL DATA

# PNP SILICON SMALL SIGNAL TRANSISTOR

Qualified per MIL-PRF-19500/392

Devices

2N3485A

2N3486A

Qualified Level

JAN JANTX JANTXV

| Ratings                                                                       | Symbol                            | 2N3485A<br>2N3486A | Unit              |          |
|-------------------------------------------------------------------------------|-----------------------------------|--------------------|-------------------|----------|
| Collector-Emitter Voltage                                                     | V <sub>CEO</sub>                  | 60                 | Vdc               |          |
| Collector-Base Voltage                                                        | V <sub>CBO</sub>                  | 60                 | Vdc               | <b>*</b> |
| Emitter-Base Voltage                                                          | V <sub>EBO</sub>                  | 5.0                | Vdc               |          |
| Collector Current Continuous                                                  | I <sub>C</sub>                    | 600                | mAdc              |          |
| Total Power Dissipation<br>@ $T_A = +25^0 C^{(1)}$<br>@ $T_C = +25^0 C^{(2)}$ | P <sub>T</sub>                    | 0.4<br>2.0         | W<br>W            |          |
| Operating & Storage Junction Temperature Range                                | T <sub>J</sub> , T <sub>stg</sub> | -55 to +200        | <sup>0</sup> C    |          |
| THERMAL CHARACTERISTICS                                                       |                                   |                    |                   | TO 46    |
| Characteristics                                                               | Symbol                            | Max.               | Unit              | TO-46    |
| Thermal Resistance Junction-to-Ambient                                        | $R_{\theta JA}$                   | 0.439              | <sup>0</sup> mC/W | (TO-2064 |
| Junction-to-Case                                                              | $R_{\theta JC}$                   | 87                 | <sup>0</sup> C/W  |          |

2) Derate linearly 11.43 mW/ $^{0}$ C above T<sub>C</sub> = +25 $^{0}$ C



### ELECTRICAL CHARACTERISTICS ( $T_A = 25^{\circ}C$ unless otherwise noted)

| Characteristics                     | Symbol               | Min. | Max. | Unit |
|-------------------------------------|----------------------|------|------|------|
| OFF CHARACTERISTICS                 |                      |      |      |      |
| Collector-Emitter Breakdown Voltage | V                    | 60   |      | Vdc  |
| $I_C = 10 \text{ mAdc}$             | V <sub>(BR)CEO</sub> | 00   |      | vuc  |
| Collector-Base Cutoff Current       |                      |      |      |      |
| $V_{CB} = 50 \text{ Vdc}$           | I <sub>CBO</sub>     |      | 10   | ηAdc |
| $V_{CB} = 60 \text{ Vdc}$           |                      |      | 10   | μAdc |
| Emitter-Base Cutoff Current         |                      |      |      |      |
| $V_{EB} = 3.5 \text{ Vdc}$          | I <sub>EBO</sub>     |      | 50   | ηAdc |
| $V_{EB} = 5.0 \text{ Vdc}$          |                      |      | 10   | μAdc |

#### 2N3485A, 2N3486A JAN SERIES

| Characteristics                                                                                                                   |                       | Symbol                     | Min.                  | Max.       | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|-----------------------|------------|------|
| ON CHARACTERISTICS <sup>(3)</sup>                                                                                                 |                       |                            |                       |            |      |
| Forward-Current Transfer Ratio                                                                                                    |                       |                            |                       |            |      |
| $I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$                                                                                 | 2N3485A<br>2N3486A    |                            | 40<br>75              |            |      |
| $I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$                                                                                 | 2N3485A<br>2N3486A    |                            | 40<br>100             |            |      |
| $I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$                                                                                  | 2N3485A<br>2N3486A    | $\mathbf{h}_{\mathrm{FE}}$ | 40<br>100             | 120        |      |
| $I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$                                                                                 | 2N3485A<br>2N3486A    |                            | 40<br>100<br>40<br>50 | 120<br>300 |      |
| $I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$                                                                                 | 2N3485A<br>2N3486A    |                            |                       |            |      |
| Collector-Emitter Saturation Voltage                                                                                              |                       |                            |                       |            |      |
| $I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$                                                                                   |                       | V <sub>CE(sat)</sub>       |                       | 0.4        | Vdc  |
| $I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$                                                                                   |                       |                            |                       | 1.6        |      |
| Base-Emitter Saturation Voltage                                                                                                   |                       |                            |                       |            |      |
| $I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$                                                                                   |                       | V <sub>BE(sat)</sub>       |                       | 1.3        | Vdc  |
| $I_{\rm C} = 500 \text{ mAdc}, I_{\rm B} = 50 \text{ mAdc}$                                                                       |                       |                            |                       | 2.6        |      |
| DYNAMIC CHARACTERISTICS                                                                                                           |                       |                            |                       |            |      |
| Small-Signal Forward Current Transfer R                                                                                           | atio                  |                            |                       |            |      |
| $I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ k}$                                                              | Hz 2N3485A<br>2N3486A | <sup>h</sup> fe            | 40<br>100             |            |      |
| Magnitude of Small-Signal Forward Current Transfer Ratio<br>$I_C = 50 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}$ |                       | <sup>h</sup> fe            | 2.0                   | 10         |      |
| Output Capacitance                                                                                                                |                       | G                          |                       | 8.0        | ъĘ   |
| $V_{CB} = 10$ Vdc, $I_E = 0$ , 100 kHz $\le f \le 1.0$ MHz                                                                        |                       | C <sub>obo</sub>           |                       | 8.0        | pF   |
| Input Capacitance<br>$V_{EB} = 2.0 \text{ Vdc}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$                               |                       | C <sub>ibo</sub>           |                       | 30         | pF   |

(3) Pulse Test: Pulse Width =  $300\mu s$ , Duty Cycle  $\leq 2.0\%$ .

### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001