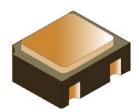

RADIATION HARDENED NPN SILICON SWITCHING TRANSISTOR


Qualified per MIL-PRF-19500/366

<u>Qualified Levels:</u> JAN, JANTX, JANTXV AND JANS

DESCRIPTION

This 2N3501 epitaxial planar transistor is military qualified up to a JANS level for high-reliability applications. This device is also available in thru hole TO-5 and TO-39 packaging as well as a low profile U4 surface mount. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

UB Package

Also available in:

TO-5 package (long-leaded) 2N3498L - 2N3501L

TO-39 (TO-205AD) package (leaded)

1 2N3498 – 2N3501

U4 package (surface mount) 12 2N3498U4 – 2N3501U4

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent of JEDEC registered 2N3501 number.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/366.
 (See <u>part nomenclature</u> for all available options.)
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- General purpose transistors for medium power applications requiring high frequency switching.
- Low profile ceramic package.
- · Lightweight.
- Military and other high-reliability applications.

MAXIMUM RATINGS @ T_C = +25 °C unless otherwise noted

Parameters / Test Conditions	Symbol	Value	Unit
Junction & Storage Temperature Range	T _J , T _{stg}	-65 to +200	°C
Thermal Resistance Junction-to-Ambient	R _{OJA}	325	°C/W
Thermal Resistance Junction-to-Solder Pad	R _{OJSP}	90	°C/W
Collector-Emitter Voltage	V_{CEO}	150	V
Collector-Base Voltage	V_{CBO}	150	V
Emitter-Base Voltage	V_{EBO}	6.0	V
Collector Current	Ic	300	mA
Total Power Dissipation	P _T	0.5 1.5	W

Notes: 1. See figure 1.

2. See figure 2.

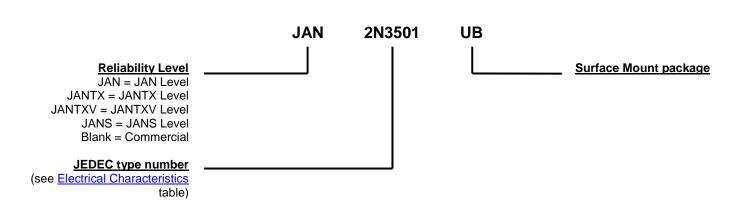
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic.
- TERMINALS: Gold plating over nickel under plate.
- MARKING: Part number, date code, manufacturer's ID.
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: < 0.04 Grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS								
Symbol	Definition							
C_obo	Common-base open-circuit output capacitance							
I _{CEO}	Collector cutoff current, base open							
I _{CEX}	Collector cutoff current, circuit between base and emitter							
I _{EBO}	Emitter cutoff current, collector open							
h _{FE}	Common-emitter static forward current transfer ratio							
V_{CEO}	Collector-emitter voltage, base open							
V _{CBO}	Collector-emitter voltage, emitter open							
V _{EBO}	Emitter-base voltage, collector open							

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit				
OFF CHARACTERISTICS								
Collector-Emitter Breakdown Voltage I _C = 10 mA, pulsed	V _{(BR)CEO}	150		V				
Collector-Base Cutoff Current $V_{CB} = 75 \text{ V}$ $V_{CB} = 150 \text{ V}$	I _{CBO}		50 10	nA μA				
Emitter-Base Cutoff Current $V_{EB} = 4.0 \text{ V}$ $V_{EB} = 6.0 \text{ V}$	I _{EBO}		25 10	nA μA				
ON CHARACTERISTICS (1)								
Forward-Current Transfer Ratio $I_C = 0.1$ mA, $V_{CE} = 10$ V $I_C = 1.0$ mA, $V_{CE} = 10$ V $I_C = 10$ mA, $V_{CE} = 10$ V $I_C = 150$ mA, $V_{CE} = 10$ V $I_C = 300$ mA, $V_{CE} = 10$ V	h _{FE}	35 50 75 100 20	300					
Collector-Emitter Saturation Voltage $I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	V _{CE(sat)}		0.2 0.4	V				
Base-Emitter Saturation Voltage $I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	V _{BE(sat)}		0.8 1.2	V				

DYNAMIC CHARACTERISTICS

Forward Current Transfer Ratio, Magnitude I _C = 20 mA, V _{CE} = 20 V, f = 100 MHz	h _{fe}	1.5	8.0	
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0,$ $100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C_{obo}		8.0	pF
Input Capacitance $V_{EB} = 0.5 \text{ V}, I_C = 0, 100 \text{ kHz} \leq f \leq 1.0 \text{ MHz}$	C _{ibo}		80	pF

⁽¹⁾ Pulse Test: pulse width = 300 μ s, duty cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time $V_{EB} = 5 \text{ V; } I_{C} = 150 \text{ mA; } I_{B1} = 15 \text{ mA}$	t _{on}		115	ns
Turn-Off Time $I_C = 150 \text{ mA}$; $I_{B1} = I_{B2} = 15 \text{ mA}$	t_{off}		1150	ns

SAFE OPERATING AREA (See SOA figure and reference MIL-STD-750 method 3053)

DC Tests $T_C = +25$ °C, tr ≥ 10 ns; 1 Cycle, t = 1.0 s Test 1 $V_{CE} = 10 \text{ V}, I_{C} = 113 \text{ mA}$ Test 2 $V_{CE} = 50 \text{ V}, I_C = 23 \text{ mA}$ Test 3 $V_{CE} = 80 \text{ V}, I_{C} = 14 \text{ mA}$ **Clamped Switching** $T_A = +25$ °C Test 1

 $I_B = 50 \text{ mA}, I_C = 300 \text{ mA}$

1000 5 2N3501UB 2 TC = +25°C 100

Collector Current Ic (Milliamperes) 5 2 10 5 2 1 5 2 1000 Collector to Emitter Voltage V_{CE} (Volts)

Maximum Safe Operating Area

GRAPHS

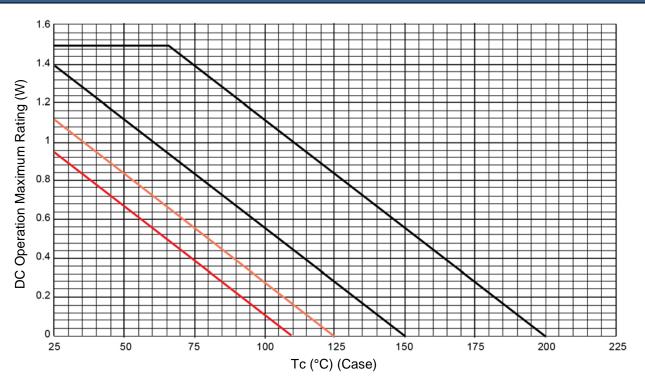


FIGURE 1 Derating for all devices ($R_{\theta JSP}$)

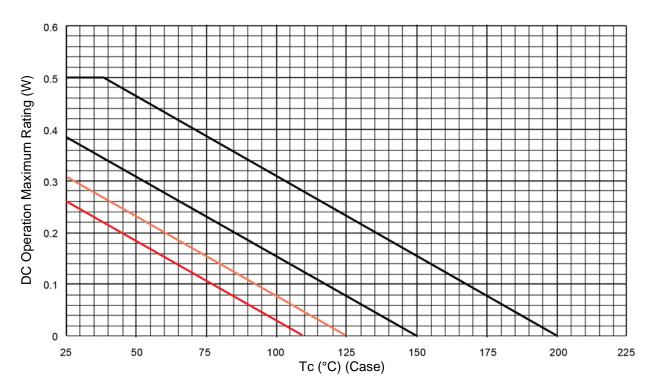
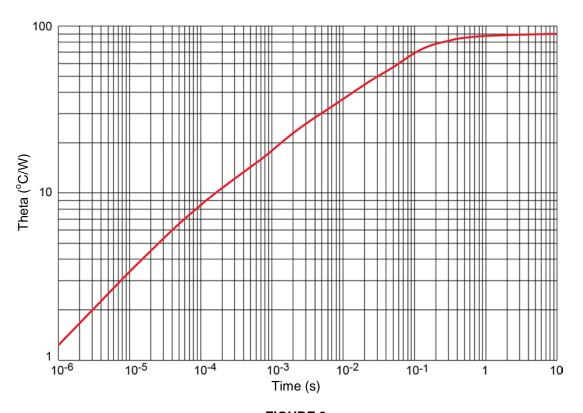
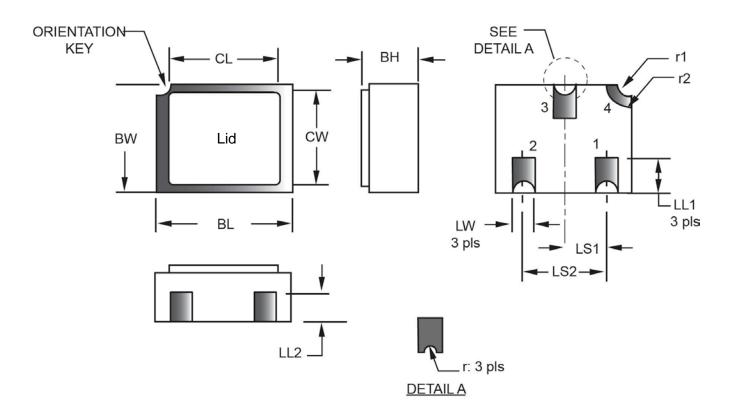



FIGURE 2 Derating for all devices (R $_{\theta JA}$)



GRAPHS

PACKAGE DIMENSIONS

	Dimensions					Dimensions					
Symbol	Inch		Millimeters		Note Sy	Symbol	Inch		Millimeters		Note
	Min	Max	Min	Max			Min	Max	Min	Max	
BH	.046	.056	1.17	1.42		LS₁	.036	.040	0.91	1.02	
BL	.115	.128	2.92	3.25		LS ₂	.071	.079	1.80	2.01	
BW	.085	.108	2.16	2.74		LW	.016	.024	0.41	0.61	
CL	-	.128	-	3.25		r	-	.008	-	0.203	
CW	-	.108	1	2.74		r ₁	-	.012	-	0.305	
LL ₁	.022	.038	0.56	0.97		r ₂	•	.022	-	0.559	
LL_2	.017	.035	0.43	0.89							

NOTES:

- 1. Dimensions are in inches.
- Millimeters are given for general information only.
- 3. Hatched areas on package denote metallized areas.
- 4. Lid material: Kovar.
- 5. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 6. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001