

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, nickel plated kovar base, nickel cap.
- TERMINALS: Gold plate over nickel, kovar for JANS. Gold plate over nickel, kovar, solder dipped for JAN, JANTX, and JANTXV.
- MARKING: Part number, date code, manufacturer's ID.
- WEIGHT: Approximately 0.3 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

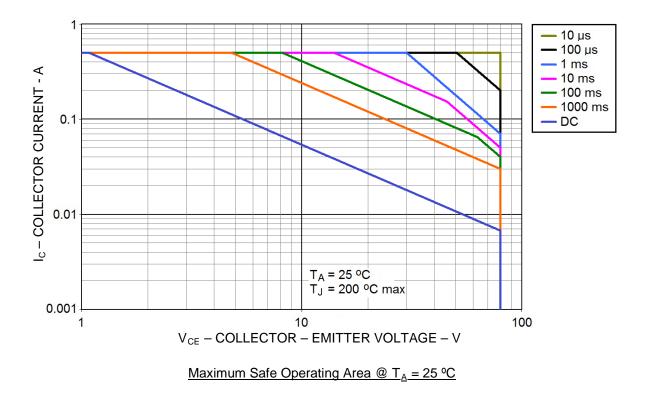
	SYMBOLS & DEFINITIONS			
Symbol	Definition			
f	Frequency			
I _B	Base current (dc)			
Ι _Ε	Emitter current (dc)			
T _A	Ambient temperature			
Tc	Case temperature			
V _{CB}	Collector to base voltage (dc)			
V _{CE}	Collector to emitter voltage (dc)			
V _{EB}	Emitter to base voltage (dc)			

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				•
Collector-Emitter Breakdown Voltage $I_{C} = 30 \text{ mA}$	V _{(BR)CEO}	80		V
Collector-Base Cutoff Current $V_{CB} = 140 V$	I _{CBO}		10	μA
Emitter-Base Cutoff Current $V_{EB} = 7 V$	I _{EBO1}		10	μA
Collector-Emitter Cutoff Current $V_{CE} = 90 V$	I _{CES}		10	nA
Emitter-Base Cutoff Current $V_{EB} = 5.0 V$	I _{EBO2}		10	nA
ON CHARACTERISTICS				
Forward-Current Transfer Ratio				
I _C = 150 mA, V _{CE} = 10 V		100	300	
$I_{C} = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$		50	300	
$I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	h _{FE}	90		
I _C = 500 mA, V _{CE} = 10 V		50	300	
$I_{C} = 1.0 \text{ A}, V_{CE} = 10 \text{ V}$		15		
Collector-Emitter Saturation Voltage				
$I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}$ $I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$	V _{CE(sat)}		0.2 0.5	V
Base-Emitter Saturation Voltage $I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}$	V _{BE(sat)}		1.1	V

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C unless otherwise noted

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward Current Transfer Ratio I_{C} = 1.0 mA, V_{CE} = 5.0 V, f = 1.0 kHz	h _{fe}	80	400	
Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio $I_{C} = 50 \text{ mA}, V_{CE} = 10 \text{ V}, f = 20 \text{ MHz}$	h _{fe}	5.0	20	
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{obo}		12	pF
Input Capacitance $V_{EB} = 0.5 \text{ V}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{ibo}		60	pF



ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C unless otherwise noted (continued)

SAFE OPERATION AREA (See SOA graph below and MIL-STD-750, method 3053)

DC Tests T _C = 25 °C, 1 cycle, t	= 10 ms	
Test 1 2N3700	V _{CE} = 10 V I _C = 180 mA	
Test 2 2N3700	$V_{CE} = 40 V$ $I_{C} = 45 mA$	
Test 3 2N3700	V _{CE} = 80 V I _C = 22.5 mA	

(1) Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%.

GRAPHS

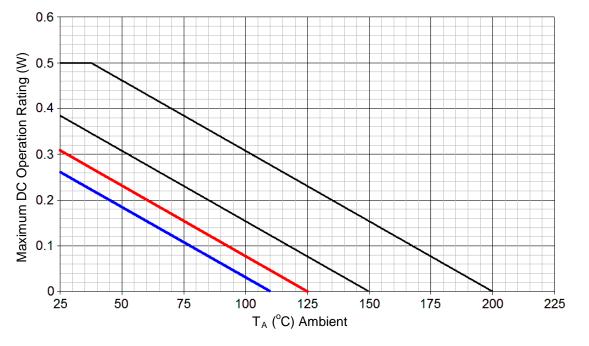
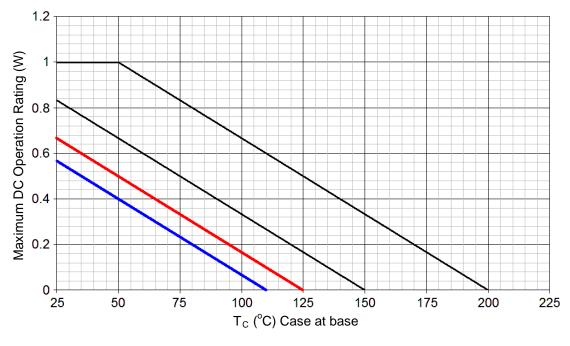
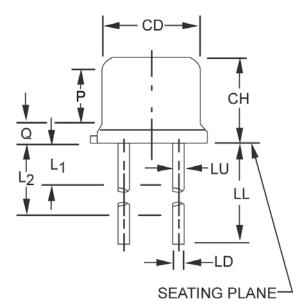
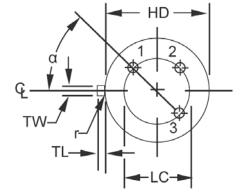


FIGURE 1 <u>Temperature-Power Derating ($R_{\Theta JA}$)</u> Leads = 0.125 inch (3.175mm)


FIGURE 2 Temperature-Power Derating (R_{eJC})

PACKAGE DIMENSIONS

	Dimensions				
Symbol	Inch		Millimeters		Note
	Min	Max	Min	Max	
CD	0.178	0.195	4.52	4.95	
СН	0.170	0.210	4.32	5.33	
HD	0.209	0.230	5.31	5.84	
LC	0.100 TP		P 2.54 TP		6
LD	0.016	0.021	0.41	0.53	7,8
LL	0.500	0.750	12.70	19.05	7,8
LU	0.016	0.019	0.41	0.48	7,8
L1	-	0.050	-	1.27	7,8
L2	0.250	-	6.35	-	7,8
Р	0.100	-	2.54	-	
Q	-	0.030	-	0.76	5
TL	0.028	0.048	0.71	1.22	3,4
TW	0.036	0.046	0.91	1.17	3
r	-	0.010	-	0.25	10
α	45° TP		45° TP		6
1, 2, 9, 11, 12					

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TH shall be held for a minimum length of .011 inch (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. This device may be measured by direct methods.
- Dimension LU applies between L₁ and L₂. Dimension LD applies between L₂ and LL minimum. Diameter is uncontrolled in L₁ and beyond LL minimum.
- 8. All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 12. Lead 1 =emitter, lead 2 =base, lead 3 =collector.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001