

TECHNICAL DATA

PNP SWITCHING SILICON TRANSISTOR

Qualified per MIL-PRF-19500/396

Devices

2N3762 2N3763 2N3762L 2N3763L

2N3764

2N3765

Qualified Level

JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	2N3762* 2N3764	2N3763* 2N3765	Unit
Collector-Emitter Voltage	V_{CEO}	40	60	Vdc
Collector-Base Voltage	V_{CBO}	40	60	Vdc
Emitter-Base Voltage	V_{EBO}	5.0		Vdc
Collector Current	I_{C}	1.5		Adc
		2N3762* ¹ 2N3763*	2N3764 ² 2N3765	
Total Power Dissipation @ $T_A = +25^{\circ}C$	P_{T}	1.0	0.5	W
Operating & Storage Junction Temp. Range	Top, Tstg	-55 to +200		0C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.		Unit
		2N3762* 2N3763*	2N3764 2N3765	
Thermal Resistance Junction-to-Case	$R_{ heta JC}$	60	88	⁰ C/W

- *Electrical characteristics for "L" suffix devices are identical to the "non L" corresponding devices
- 1) Derate linearly at 5.71 mW/ 0 C for $T_{A} > +25^{0}$ C
- 2) Derate linearly at 2.86 mW/ $^{\circ}$ C for $T_A > +25^{\circ}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS (T_A = 25⁰C unless otherwise noted)

Characterist	ics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Current					
$I_C = 10 \text{ mAdc}$	2N3762, 2N3764	$V_{(BR)CEO}$	40		Vdc
	2N3763, 2N3765		60		
Collector-Base Cutoff Current					
$V_{CB} = 20 \text{ Vdc}$	2N3762, 2N3764			100	4.1
$V_{CB} = 30 \text{ Vdc}$	2N3763, 2N3765	I_{CBO}		100	ηAdc
$V_{CB} = 40 \text{ Vdc}$	2N3762, 2N3764			10	μAdc
$V_{CB} = 60 \text{ Vdc}$	2N3763, 2N3765			10	

6 Lake Street, Lawrence, MA 01841

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

120101

2N3762, L, 2N3763, L, 2N3764, 2N3765 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics		Symbol	Min.	Max.	Unit
Collector-Emitter Cutoff Current		•			
$V_{EB} = 2.0 \text{ Vdc}, V_{CE} = 20 \text{ Vdc}$	2N3762, 2N3764	I_{CEX}		100	ηAdc
$V_{EB} = 2.0 \text{ Vdc}, V_{CE} = 30 \text{ Vdc}$	2N3763, 2N3765			100	
Emitter-Base Cutoff Current					
$V_{EB} = 2.0 \text{ Vdc}$	All Types	т		200	ηAdc
$V_{EB} = 5.0 \text{ Vdc}$	2N3762, 2N3764	$I_{ m EBO}$		10	μAdc
	2N3763, 2N3765			10	
ON CHARACTERISTICS (3)					
Forward-Current Transfer Ratio					
$I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$			35		
$I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$			40		
$I_C = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$			40	140	
$I_C = 1.0 \text{ Adc}, V_{CE} = 1.5 \text{ Vdc}$	2N3762, 2N3764	h_{FE}	30	120	
	2N3763, 2N3765		20	80	
$I_C = 1.5 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}$	2N3762, 2N3764		30		
	2N3763, 2N3765		20		
Collector-Emitter Saturation Voltage					
$I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$				0.1	
$I_C = 150 \text{ m Adc}, I_B = 15 \text{ mAdc}$		$V_{CE(sat)}$		0.22	V/.1-
$I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$				0.5	Vdc
$I_C = 1.0 \text{ Adc}, I_B = 100 \text{ mAdc}$				0.9	
Base-Emitter Saturation Voltage					
$I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$				0.8	
$I_C = 150 \text{ m Adc}, I_B = 15 \text{ mAdc}$ $I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$		V _{BE(sat)}		1.0	V.1.
				1.2	Vdc
$I_C = 1.0 \text{ Adc}, I_B = 100 \text{ mAdc}$			0.9	1.4	
DYNAMIC CHARACTERISTICS			1	•	1
Forward Current Transfer Ratio, Magnitude		1 1			
$I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MH}$		$ h_{\mathrm{fe}} $	1.8	6.0	
	2N3763, 2N3765		1.5	6.0	
Output Capacitance		$C_{ m obo}$		25	pF
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ N}$	/IHZ	000			•
Input Capacitance	MII	C_{ibo}		80	pF
$V_{EB} = 0.5 \text{ Vdc}, I_C = 0, 100 \text{ kHz} \le f \le 1.0$	MHZ			1	•
SWITCHING CHARACTERISTICS		t.		0.0	
Delay Time $V_{CC} = 30 \text{ Vdc}, V_{EB} = 0,$		t _d		8.0	ηs
Rise Time $I_C = 1.0 \text{ mAdc}, I_{B1} = 100 \text{ mAdc}$		t r		35	ηs
Storage Time $V_{CC} = 30 \text{ Vdc}, V_{EB} = 0,$		t _s		80	ηs
Fall Time $I_C = 1.0 \text{ mAdc}, I_{B1} = 100 \text{ m}$	nAdc	^t f		35	ηs

⁽³⁾ Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E

FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G

NTE101 NTE13 NTE15