PNP SILICON LOW POWER TRANSISTOR
 Qualified per MIL-PRF-19500/350

DEVICES

2N3867	2N3867S
2N3868	2N3868S

LEVELS

JAN
JANTX JANTXV JANS

ABSOLUTE MAXIMUM RATINGS ($T_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameters / Test Conditions	Symbol	2N3867	2N3868	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	40	60	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	40	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc	
Collector Current	I_{C}	3.0	mAdc	
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}^{(1)}$	P_{T}	1.0	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$	
Operating \& Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$	

THERMAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	175	${ }^{\circ} \mathrm{C} / \mathrm{mW}$

Note: * Electrical characteristics for "S" suffix devices are identical to the "non S" corresponding devices.
1/ Derate linearly $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>+25^{\circ} \mathrm{C}$
2/ Derate linearly $57.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>+25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERTICS					
Collector-Emitter Breakdown Cu $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{Adc}$	$\begin{aligned} & \text { nt } \\ & \text { 2N3867, S } \\ & \text { 2N3868, S } \end{aligned}$	$\mathrm{V}_{\text {(BR)CEO }}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$		Vdc
Collector-Base Cutoff Current $\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=40 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{CB}}=60 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \end{aligned}$	$\mathrm{I}_{\text {CBO }}$		100	$\mu \mathrm{Adc}$
Emitter-Base Cutoff Current $\mathrm{V}_{\mathrm{EB}}=4.0 \mathrm{Vdc}$		$\mathrm{I}_{\text {EBO }}$		100	$\mu \mathrm{Adc}$
Collector-Emitter Cutoff Current $\mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{CE}}=60 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{CE}}=60 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \\ & \text { 2N3867, } \\ & \text { 2N3868, } \end{aligned}$	$\mathrm{I}_{\text {CEX }}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$

TO-5 * 2N3867, 2N3868

TO-39 * (TP-205AD) 2N3867S, 2N3868S

ELECTRICAL CHARACTERISTICS ($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted) (CONT.)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERTICS ${ }^{(2)}$					
Forward-Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \end{aligned}$		$\begin{aligned} & 50 \\ & 35 \end{aligned}$		
$\mathrm{I}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \end{aligned}$		$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \end{aligned}$	
$\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$		
$\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		
$\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \end{aligned}$		$\begin{aligned} & 25 \\ & 17 \end{aligned}$		
Collector-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc}$ $\mathrm{I}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=150 \mathrm{mAdc}$ $\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=250 \mathrm{mAdc}$		$\mathrm{V}_{\mathrm{CE}(\text { sat })}$		$\begin{gathered} 0.5 \\ 0.75 \\ 1.5 \end{gathered}$	Vdc
Base-Emitter Saturation Voltage $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=150 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=250 \mathrm{mAdc} \end{aligned}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \end{aligned}$	$\mathrm{V}_{\mathrm{BE}(\mathrm{sat})}$	$\begin{gathered} 0.9 \\ 0.85 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.4 \\ & 1.4 \\ & 2.0 \end{aligned}$	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{f}=20 \mathrm{MHz}$				
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	3	12	$\mathrm{k} \Omega$	
Iutput Capacitance $\mathrm{V}_{\mathrm{EB}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{obo}}$		120	pF

(2) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

6 Lake Street, Lawrence, MA 01841
1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803
Website: http: //www.microsemi.com

SWITCHING CHARACTERISTICS

SAFE OPERATING AREA

DC Test

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1$ cycle, $\mathrm{t}=1.0 \mathrm{~s}$

Test 1

$\mathrm{V}_{\mathrm{CE}}=3.33 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}$

Test 2

$\mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=160 \mathrm{mAdc} \quad 2 \mathrm{~N} 3867$,
$\mathrm{V}_{\mathrm{CE}}=60 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=80 \mathrm{mAdc} \quad 2 \mathrm{~N} 3868, \mathrm{~S}$

PACKAGE DIMENSIONS

Symbol	Dimensions				Note
	Inches		Millimeters		
	Min	Max	Min	Max	
CD	. 305	. 335	7.75	8.51	5,6
CH	. 240	. 260	6.10	6.60	
HD	. 335	. 370	8.51	9.40	4, 5
LC	. 200 TP		5.08 TP		7
LD	. 016	. 019	0.41	0.48	8,9
LL	See note 8, 14				
LU	. 016	. 019	0.41	0.48	8,9
L_{1}		. 050		1.27	8,9
L_{2}	. 250		6.35		8,9
P	. 100		2.54		7
Q		. 030		0.76	5
TL	. 029	. 045	0.74	1.14	3,4
TW	. 028	. 034	0.71	0.86	3
R		. 010		0.25	10
α	$45^{\circ} \mathrm{TP}$		$45^{\circ} \mathrm{TP}$		7
1, 2, 10, 12, 13, 14					

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Beyond r (radius) maximum, TW shall be held for a minimum length of $.011(0.28 \mathrm{~mm})$.
4. Dimension TL measured from maximum HD.
5. Body contour optional within zone defined by HD, CD, and Q .
6. CD shall not vary more than .010 inch $(0.25 \mathrm{~mm})$ in zone P. This zone is controlled for automatic handling.
7. Leads at gauge plane $.054+.001-.000$ inch $(1.37+0.03-0.00 \mathrm{~mm})$ below seating plane shall be within .007 inch $(0.18$ mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods or by gauging procedure.
8. Dimension LU applies between L_{1} and L_{2}. Dimension $L D$ applies between L_{2} and $L L$ minimum. Diameter is uncontrolled in and beyond LL minimum.
9. All three leads.
10. The collector shall be internally connected to the case.
11. Dimension r (radius) applies to both inside corners of tab.
12. In accordance with ASME Y14.5M, diameters are equivalent to $\phi \mathrm{x}$ symbology.
13. Lead $1=$ emitter, lead $2=$ base, lead $3=$ collector.
14. For non-S-suffix devices (TO-5), dimension $L L=1.5$ inches (38.10 mm) min. and 1.75 inches (44.45 mm) max. For Ssuffix types (TO-39), dimension $L L=.5$ inch (12.70 mm) min. and .750 inch (19.05 mm) max.

FIGURE 1. Physical dimensions (similar to TO-5, TO-39)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001

