NPN POWER SILICON TRANSISTOR

Qualified per M IL-PRF-19500/ 526

Devices

2N3879

Qualified Level
JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	75	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	120	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	7.0	Vdc
Base Current	I_{B}	5.0	Adc
Collector Current	I_{C}	7.0	Adc
Total Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{0} \mathrm{C}^{(1)}$	P_{T}	35	W
Operating \& Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{0} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JC}}$	5.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1) Derate linearly $200 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathbf{T}_{\mathrm{C}}=\mathbf{2 5}^{\boldsymbol{0}} \mathrm{C}$ unless otherwise noted)

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\mathrm{I}_{\mathrm{C}}=200 \mathrm{mAdc}$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	75		Vdc
Collector-Emitter Cutoff Current $\mathrm{V}_{\mathrm{CE}}=50$ Vdc	$\mathrm{I}_{\mathrm{CEO}}$		5.0	Vdc
Collector-Emitter Cutoff Current $\mathrm{V}_{\mathrm{CE}}=100$ Vdc, $\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{Vdc}$	$\mathrm{I}_{\mathrm{CEX}}$		4.0	mAdc
Collector-Base Cutoff Current $\mathrm{V}_{\mathrm{CB}}=120$ Vdc	$\mathrm{I}_{\mathrm{CBO}}$		25	mAdc
Emitter-Base Cutoff Current $\mathrm{V}_{\mathrm{EB}}=7.0$ Vdc	$\mathrm{I}_{\mathrm{EBO}}$		10	mAdc

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS ${ }^{(2)}$				
Forward-Current Transfer Ratio				
$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$				
$\mathrm{I}_{\mathrm{C}}=4.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$				
$\mathrm{I}_{\mathrm{C}}=4.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}$				

DYNAMIC CHARACTERISTICS

Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=10 \mathrm{MHz}$	$\left\|\mathrm{h}_{\mathrm{fe}}\right\|$	4.0	20	
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,0.1 \mathrm{MHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{obo}}$		175	pF

SWITCHING CHARACTERISTICS

Turn-On Time $\mathrm{V}_{\mathrm{CC}}=30$ Vdc; $\mathrm{I}_{\mathrm{C}}=4.0$ Adc; $\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{Adc}$	${ }^{\mathrm{t}}$ on		0.44	$\mu \mathrm{~s}$
Turn-Off Time $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=4.0 \mathrm{Adc} ; \mathrm{I}_{\mathrm{B}}=-\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{Adc}$	${ }^{\text {t}}{ }^{\text {off }}$		1.2	$\mu \mathrm{~s}$

SAFE OPERATING AREA

DC Tests

$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, 1$ Cycle, $\mathrm{t}=1.0 \mathrm{~s}$
Test 1
$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=7.0 \mathrm{Adc}$
Test 2
$\mathrm{V}_{\mathrm{CE}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.25 \mathrm{Adc}$
Test 3
$\mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}$
Test 4
$\mathrm{V}_{\mathrm{CE}}=75 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}$
(2) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001

