

TECHNICAL DATA

NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/466

Devices Qualified Level

2N5683 2N5684

JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	2N5683	2N5684	Unit
Collector-Emitter Voltage	V_{CEO}	60	80	Vdc
Collector-Base Voltage	V_{CBO}	60	80	Vdc
Emitter-Base Voltage	V_{EBO}	5.0		Vdc
Base Current	I_{B}	15		Adc
Collector Current	I_{C}	50		Adc
Total Power Dissipation $^{(1)}$ @ $T_C = 25^0$ C	300		W	
$^{\circ}$	P_{T}	17	71	W
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-65 to	+200	^{0}C

THERMAL CHARACTERISTICS

THEREVELE CHARGETERISTICS			
Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.584	⁰ C/W

¹⁾ Derate linearly 1.715 W/ $^{\circ}$ C between $T_C = +25^{\circ}$ C and $T_C = +200^{\circ}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}$ C unless otherwise noted)

Characterist	ics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = 200 \text{ mAdc}$	2N5683	$V_{(BR)CEO}$	60		Vdc
	2N5684		80		
Collector-Emitter Cutoff Current					
$V_{CE} = 30 \text{ Vdc}$	2N5683	I_{CEO}		5.0	μAdc
$V_{CE} = 40 \text{ Vdc}$	2N5684			5.0	
Collector-Emitter Cutoff Current					
$V_{CE} = 60 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N5683	I_{CEX}		5.0	μAdc
$V_{CE} = 80 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N5684			5.0	
Collector-Base Cutoff Current					
$V_{CB} = 60 \text{ Vdc}$	2N5683	I_{CBO}		5.0	μAdc
$V_{CB} = 80 \text{ Vdc}$	2N5684			5.0	
Emitter-Base Cutoff Current		т		5.0	۸
$V_{EB} = 5.0 \text{ Vdc}$		I_{EBO}		5.0	μAdc

6 Lake Street, Lawrence, MA 01841

120101

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

Page 1 of 2

2N5683, 2N5684 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)				
Forward-Current Transfer Ratio				
$I_C = 5.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$	1.	30		
$I_C = 25 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$	$h_{ m FE}$	15 5.0	60	1
$I_C = 50 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}$				
Collector-Emitter Saturation Voltage				
$I_C = 25 \text{ Adc}, I_B = 2.5 \text{ Adc}$	V _{CE(sat)}		1.0	Vdc
$I_C = 50 \text{ Adc}, I_B = 10 \text{ Adc}$			5.0	
Base-Emitter Saturation Voltage	V		2.0	Vdc
$I_C = 25 \text{ Adc}, I_B = 2.5 \text{ Adc}$	V _{BE(sat)}		2.0	
Base-Emitter Voltage	V		2.0	Vdc
$I_C = 25 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$	V _{BE(on)}		2.0	vac
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}	2.0	20	
$I_C = 5.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ MHz}$				
Small-Signal Short-Circuit Forward Current Transfer Ratio	h_{fe}	15		1
$I_C = 10 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$	11 _{fe}	13		
Output Capacitance	C.		2,000	pF
$V_{CB}=10~Vdc,~I_E=0,~0.1~MHz \leq f \leq 1.0~MHz$	C_{obo}		2,000	pr
SWITCHING CHARACTERISTICS				
Turn-On Time	^t on		1.5	ll o
$V_{CC} = 30 \text{ Vdc}; I_C = 25 \text{ Adc}; I_B = 2.5 \text{ Adc}$	OII	1.3	μs	
Turn-Off Time	toff		3.0	Ше
$V_{CC} = 30 \text{ Vdc}; I_C = 25 \text{ Adc}; I_{B1} = I_{B2} = 2.5 \text{ Adc}$	OH	3.0		μs
SAFE OPERATING AREA				

DC Tests	
$T_C = +25^{\circ}C$, 1 Cycle, $t = 1.0 \text{ s}$	
Test 1	
$V_{CE} = 6.0 \text{ Vdc}, I_C = 50 \text{ Adc}$	All Types
Test 2	
$V_{CE} = 30 \text{ Vdc}, I_C = 10 \text{ Adc}$	All Types
Test 3	
$V_{CE} = 50 \text{ Vdc}, I_C = 560 \text{ mAdc}$	2N5683
$V_{CE} = 60 \text{ Vdc}, I_C = 640 \text{ mAdc}$	2N5684

⁽²⁾ Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460
2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA
2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E
US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E
NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13
NTE15 NTE16001