

PNP SILICON POWER TRANSISTOR

DESCRIPTION

These 2N6317 and 2N6318 devices are an excellent choice for un-tuned amplifier applications. It is also ideal for general purpose power switch and amplifier applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

TO-213AA (TO-66) Package

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Hermetically sealed.
- Complimentary pairing with the NPN 2N6315 and 2N6316.
- RoHS compliant versions available.

APPLICATIONS / BENEFITS

- · Convenient package.
- Mechanically rugged.
- · Commercial, industrial, and military uses.

MAXIMUM RATINGS @ 25 °C unless otherwise stated

Parameters/Test Conditions		Symbol	Value	Unit
Junction and Storage Temperature		T_J and T_{STG}	-65 to +200	°C
Thermal Resistance Junction-to-Lead (1)		$R_{\Theta JL}$	235	°C
Collector-Base Voltage	2N6317	V_{CBO}	60	V
	2N6318		80	
Emitter-Base Voltage		V_{EBO}	5	V
Collector-Emitter Voltage	2N6317	V_{CEO}	60	V
	2N6318		80	
Continuous Operating Collector Current		Ic	7	Α
Continuous Base Current			2	Α
Total Power Dissipation (2)		P _T	90	W

NOTES: 1. At 1/8 inch from case for 10 seconds.

2. Derate linearly at 0.515 W/°C.

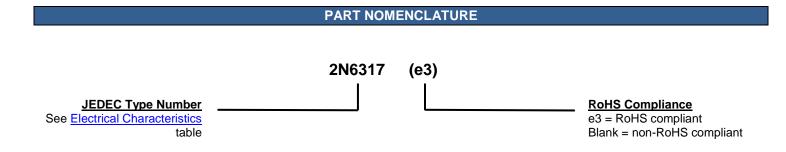
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600

Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298


Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetic, TO-66 package. Nickel plate with nickel cap.
- TERMINALS: Solder dipped (Sn63/Pb37) over nickel plated alloy 52. RoHS compliant matte-tin plating is also available.
- MARKING: MSC, part number, date code, polarity symbol.
- WEIGHT: Approximately 5.7 grams.
- See Package Dimensions on last page.

	SYMBOLS & DEFINITIONS			
Symbol	Symbol Definition			
I _B	Base current			
T _C	Case temperature			
V_{CB}	Collector-base voltage			
V _{CC}	Collector-supply voltage			
V_{EB}	Emitter-base voltage			

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise stated

Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
STATIC CHARACTERISTICS					
Collector Cutoff Current $V_{CE} = 60 V_{BE} = 1.5 V$, $T_{C} = 150 °C$ $V_{CE} = 80 V_{BE} = 1.5 V$, $T_{C} = 150 °C$	2N6317 2N6318	I _{CEX}		2.0	mA
Collector Cutoff Current $V_{CE} = 60 V_{BE} = 1.5 V$ $V_{CE} = 80 V_{BE} = 1.5 V$	2N6317 2N6318	I _{CEX}		0.25	mA
Emitter Cutoff Current V _{EB} = 5 V		I _{EBO}		1.0	mA
Collector-Emitter Open Base Sustain Voltage $^{(1)}$ $I_B = 0$, $I_C = 100$ mA	2N6317 2N6318	V _{CEO(sus)}	60 80		
Collector Cutoff Current, Base Open $I_B = 0$, $V_{CE} = 30 \text{ V}$ $I_B = 0$, $V_{CE} = 40 \text{ V}$	2N6317 2N6318	I _{CEO}		0.5	mA
DC Forward Current Transfer Ratio $^{(1)}$ $I_C = 7$ A, $V_{CE} = 4$ V $I_C = 2.5$ A, $V_{CE} = 4$ V $I_C = 0.5$ A, $V_{CE} = 4$ V		h _{FE}	4 25 35	125	
Collector-Emitter Saturation Voltage $^{(1)}$ $I_C = 7.0 \text{ A}, I_B = 1.75 \text{ A}$ $I_C = 4.0 \text{ A}, I_B = 0.4 \text{ A}$		V _{CE(sat)}		2.0 1.0	V
Base-Emitter Saturation Voltage $^{(1)}$ $I_C = 7.0 \text{ A}, I_B = 1.75 \text{ A}$		V _{BE(sat)}		2.5	V
Base-Emitter Voltage $^{(1)}$ $I_C = 2.5 \text{ A}, V_{CE} = 4.0 \text{ V}$		V_{BE}		1.5	V

NOTE: 1. Pulse Width \leq 300 μ s; duty cycle \leq 2 %.

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $V_{CE} = 10 \text{ V}, I_{C} = 0.25 \text{ A}, f = 1 \text{ MHz}$	h _{fe}	4		
Common Base Output $V_{CB} = 10 \text{ V}, I_E = 0 \text{ A}, f = 1 \text{ MHz}$	C _{ob}		300	pF
Common Emitter Small-Signal Short-Circuit Forward Current Trans-Ratio V _{CE} = 4 V, I _C = 0.5 A, f = 1 kHz	h _{fe}	20		

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Rise time $V_{CC} = 30 \text{ V}, I_C = 25 \text{ A}, I_{B1} = I_{B2} = 0.25 \text{ A} \text{ (see figure 2)}$	t _r		0.7	μS
Storage time $V_{CC} = 30 \text{ V}, I_C = 25 \text{ A}, I_{B1} = I_{B2} = 0.25 \text{ A} \text{ (see figure 2)}$	t _s		1.0	μS
Fall time $V_{CC} = 30 \text{ V}$, $I_C = 25 \text{ A}$, $I_{B1} = I_{B2} = 0.25 \text{ A}$ (see figure 2)	t _f		0.8	μS

GRAPHS

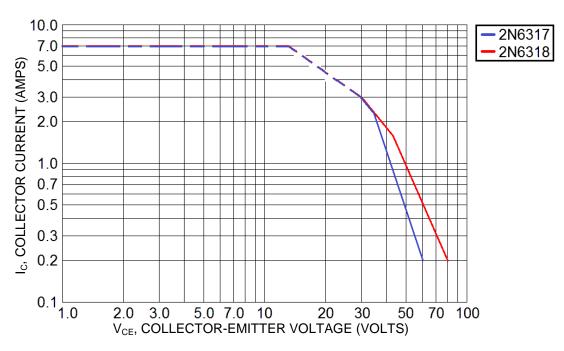
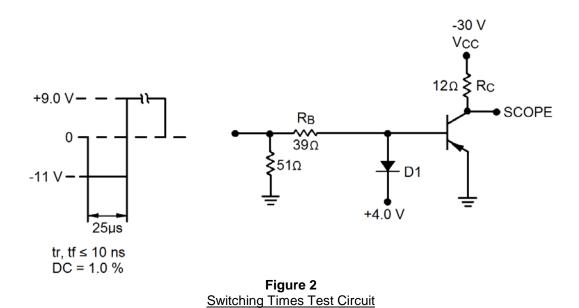
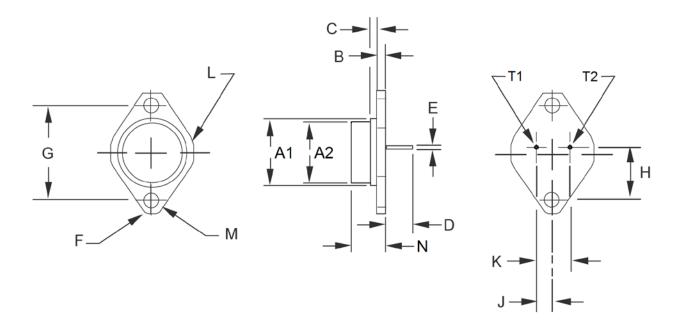




Figure 1
Safe Operating Area (T_C = 25 °C)

PACKAGE DIMENSIONS

DIM	INCH		MILLIMETERS			
	MIN	MAX	MIN	MAX		
A1	.470	.500	11.94	12.70		
A2	-	.620	-	15.75		
В	.050	.075	1.27	1.91		
С	-	.050	-	1.27		
D	.360	1	9.14	-		
E	.028	.034	0.71	0.86		
F	.145	radius	3.68 radius			
G	.958	.962	24.33	24.43		
Н	.570	.590	14.48	14.99		
J	.093	.107	2.36	2.72		
K	.190	.210	4.83	5.33		
L	.350	.350 radius		8.89 radius		
М	.142	.152	3.61	3.86		
N	.250	.340	6.35	8.64		
T1	Base					
T2	Emitter					
Case	Collector					

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460
2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA
2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E
US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E
NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13
NTE15 NTE16001