

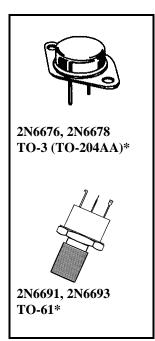
NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/538

Devices Qualified Level

2N6676 2N6678 2N6691 2N6693

JAN JANTX JANTXV


MAXIMUM RATINGS

WAZIMUW KATINGS				
Ratings	Symbol	2N6676	2N6678	Unit
		2N6691	2N6693	
Collector-Emitter Voltage	V_{CEO}	300	400	Vdc
Collector-Base Voltage	V_{CBO}	450	650	Vdc
Collector-Base Voltage	V_{CEX}	450	650	Vdc
Emitter-Base Voltage	V_{EBO}	8.0		Vdc
se Current I _B 5.0		.0	Adc	
Collector Current	$I_{\rm C}$	15		Adc
		2N6676	2N6691	
		2N6678	2N6693	
Total Power Dissipation @ $T_A = 25^{\circ}C$ @ $T_C = 25^{\circ}C^{(1)}$	D	$6.0^{(2)}$	$3.0^{(3)}$	W
$@ T_C = 25^0 C^{(1)}$	P_{T}	175	175	W
Operating & Storage Junction Temperature Range	T _{op} ; T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.0	⁰ C/W

- 1) Derate linearly $1.0 \text{ W/}^{0}\text{C for T}_{C} > 25^{0}\text{C}$
- 2) Derate linearly $34.2 \text{ mW/}^{\circ}\text{C}$ for $T_A > 25^{\circ}\text{C}$
- 3) Derate linearly $17.1 \text{ mW/}^{\circ}\text{C}$ for $T_A > 25^{\circ}\text{C}$

* See Appendix A for Package Outline

ELECTRICAL CHARACTERISTICS (T_C = 25⁰C unless otherwise noted)

Characteristics		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = 200 \text{ mAdc}$	2N6676, 2N6691	$V_{(BR)CEO}$	300		Vdc
	2N6678, 2N6693		400		
Collector-Emitter Cutoff Current					
$V_{CE} = 450 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N6676, 2N6691	I_{CEX}		0.1	mAdc
$V_{CE} = 650 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N6678, 2N6693			0.1	

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

2N6676, 2N6678, 2N6691, 2N6693 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

	Symbol	Min.	Max.	Unit		
Emitter-Base Cutoff Current		т			m A da	
$V_{EB} = 8.0 \text{ Vdc}$		I_{EBO}		2.0	mAdc	
Collector-Base Cut	off Current					
$V_{CB} = 450 \text{ Vdc}$ 2N6676, 2N6691		I_{CBO}		1.0	mAdc	
$V_{CB} = 650 \text{ Vdc}$ 2N6678, 2				1.0		
ON CHARACTE	RISTICS (4)					
Forward-Current T	ransfer Ratio					
$I_C = 1.0 \text{ Adc}; V_C$	E = 3.0 Vdc	h_{FE}	15	40		
$I_C = 15 \text{ Adc}; V_{CE}$	z = 3.0 Vdc		8.0	20		
Collector-Emitter S	Saturation Voltage	3.7		1.0	37.1.	
$I_C = 15 \text{ Adc}; I_B = 3.0 \text{ Adc}$		V _{CE(sat)}		1.0	Vdc	
Base-Emitter Saturation Voltage		37		1.5	Vdc	
$I_C = 15 \text{ Adc}; I_B = 3.0 \text{ Adc}$		V _{BE(sat)}		1.5	vuc	
OYNAMIC CHA	RACTERISTICS					
Small-Signal Short	-Circuit Forward Current Transfer Ratio	h _{fe}	3.0	10		
$I_C = 1.0 \text{ Adc}; V_{CE} = 10 \text{ Vdc}, f = 5 \text{ MHz}$		n _{fe}	3.0	10		
Output Capacitance		C	150	500	pF	
$V_{CB} = 10 \text{ Vdc}; I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$		$C_{ m obo}$	130			
SWITCHING CH	IARACTERISTICS					
Delay Time		^t d		0.1	μs	
Rise Time		t r		0.6	μs	
Storage Time	See Figure 3 of MIL-PRF-19500/538	t _S		2.5	μs	
Fall Time Cross-Over Time		t _f		0.5	μs	
		t _c		0.5	μs	

SAFE OPERATING AREA	
DC Tests	
$T_C = +25^{\circ}C$, 1 Cycle, $t = 1.0 \text{ s}$	
Test 1	
$V_{CE} = 11.7 \text{ Vdc}, I_{C} = 15 \text{ Adc}$	All Types
Test 2	
$V_{CE} = 30 \text{ Vdc}, I_{C} = 5.9 \text{ Adc}$	2N6676, 2N6678
Test 3	
$V_{CE} = 100 \text{ Vdc}, I_{C} = 0.25 \text{ Adc}$	All Types
Test 4	
$V_{CE} = 25 \text{ Vdc}, I_C = 7.0 \text{ Adc}$	2N6691, 2N6693
Test 5	
$V_{CE} = 300 \text{ Vdc}, I_C = 20 \text{ mAdc}$	2N6676, 2N6691
$V_{CE} = 400 \text{ Vdc}, I_C = 10 \text{ mAdc}$	2N6678, 2N6693
Clamped Switching	
$T_A = 25^0 \text{C}$; $V_{CC} = 15 \text{ Vdc}$	
I _C = 15 Adc; Clamped Voltage = 350 Vdc	2N6676, 2N6691
I _C = 15 Adc; Clamped Voltage = 450 Vdc	2N6678, 2N6693

⁽⁴⁾ Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001