

TECHNICAL DATA

MULTIPLE (QUAD) PNP SILICON SWITCHING TRANSISTOR Qualified per MIL-PRF-19500/558

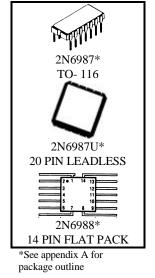
Devices

2N6987 2N6987U

2N6988

Qualified Level JAN JANTX JANTXV JANS

MAXIMUM RATINGS (1)


Ratings	Symbol	Value	Units
Collector-Emitter Voltage ⁽⁴⁾	V _{CEO}	60	Vdc
Collector-Base Voltage ⁽⁴⁾	V _{CBO}	60	Vdc
Emitter-Base Voltage ⁽⁴⁾	V _{EBO}	5.0	Vdc
Collector Current	I _C	600	mAdc
Total Power Dissipation @ $T_A = +25^{0}C$ 2N6987 ⁽²⁾ 2N6987U ⁽²⁾ 2N6988 ⁽³⁾	P _T	1.5 1.0 0.4	W
Operating & Storage Junction Temperature Range	Top. Tstg	-65 to +200	⁰ C

1) Maximum voltage between transistors shall be ≥ 500 Vdc

2) Derate linearly 8.57 mW/ $^{\circ}$ C above T_A = +25 $^{\circ}$ C

3) Derate linearly 2.286 mW/ 0 C above T_A = +25 0 C.

4) Ratings apply to each transistor in the array.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage	N/	V _{(BR)CEO} 60	60	Vdc
$I_{\rm C} = 10 \text{ mAdc}$	V (BR)CEO			vuc
Collector-Base Cutoff Current				
$V_{CB} = 60 \text{ Vdc}$	I _{CBO}		10	μAdc
$V_{CB} = 50 \text{ Vdc}$			10	ηAdc
Emitter-Base Cutoff Current				
$V_{BE} = 5.0 \text{ Vdc}$	I_{EBO}		10	μAdc
$V_{\rm EB} = 3.5 \mathrm{Vdc}$			50	ηAdc

2N6987, 2N6988 JAN, SERIES

ELECTRICAL CHARACTERISTICS (con't)					
Characteristics	Symbol	Min.	Max.	Unit	
ON CHARACTERISTICS					
Forward-Current Transfer Ratio					
$I_{C} = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$		75			
$I_{C} = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$		100	450		
$I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	$h_{\rm FE}$	100	200		
$I_{C} = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$		100	300		
$I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$		50			
Collector-Emitter Saturation Voltage					
$I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$	V _{CE(sat)}		0.4		
$I_{\rm C} = 500 \text{ mAdc}, I_{\rm B} = 50 \text{ mAdc}$			1.6	Vdc	
Base-Emitter Voltage					
$I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$	V _{BE(sat)}		1.3	Vdc	
$I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$			2.6		
DYNAMIC CHARACTERISTICS					
Magnitude of Small-Signal Short-Circuit		2.0	8.0		
Forward-Current Transfer Ratio	h _{fe}				
$I_{C} = 50 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}$					
Small-Signal Short-Circuit Forward Current Transfer Ratio	h _{fe}	100			
$I_{C} = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}$	IIfe				
Output Capacitance	C _{obo}		8.0	pF	
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	Cobo				
Input Capacitance	C _{ibo}		30	pF	
$V_{EB} = 2.0 \text{ Vdc}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{1bo}				

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001