

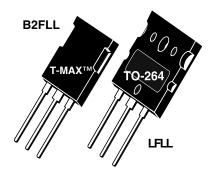
APT5010B2FLL APT5010LFLL

500V 46A 0.100Ω

ER MOS 7[®]

Power MOS 7[®] is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7° by significantly lowering $R_{\text{DS(ON)}}$ and Q_{g} . Power MOS 7° combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

Increased Power Dissipation


• Lower Miller Capacitance

Easier To Drive

Lower Gate Charge, Qg

• Popular T-MAX™ or TO-264 Package

• FAST RECOVERY BODY DIODE

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT5010B2FLL_LFLL	UNIT	
V _{DSS}	Drain-Source Voltage	500	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	46	Amps	
I _{DM}	Pulsed Drain Current (1)	184	Allips	
V _{GS}	Gate-Source Voltage Continuous	±30	Volts	
V_{GSM}	Gate-Source Voltage Transient	±40	Volto	
P_{D}	Total Power Dissipation @ T _C = 25°C	520	Watts	
. D	Linear Derating Factor	4.0	W/°C	
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C	
T_L	Lead Temperature: 0.063" from Case for 10 Sec.	300		
I _{AR}	Avalanche Current (1) (Repetitive and Non-Repetitive)	50	Amps	
E _{AR}	Repetitive Avalanche Energy 1	50	mJ	
E _{AS}	Single Pulse Avalanche Energy (4)	1600	1110	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250\mu\text{A})$	500			Volts
R _{DS(on)}	Drain-Source On-State Resistance $②$ ($V_{GS} = 10V$, $I_D = 23A$)			0.100	Ohms
1	Zero Gate Voltage Drain Current (V _{DS} = 500V, V _{GS} = 0V)			250	- μΑ
DSS	Zero Gate Voltage Drain Current (V _{DS} = 400V, V _{GS} = 0V, T _C = 125°C)			1000	
I _{GSS}	Gate-Source Leakage Current $(V_{GS} = \pm 30V, V_{DS} = 0V)$			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 2.5 \text{mA})$	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

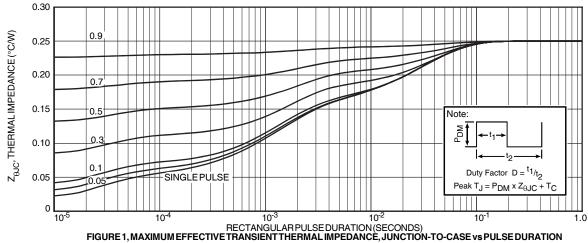
DYNAMIC CHARACTERISTICS

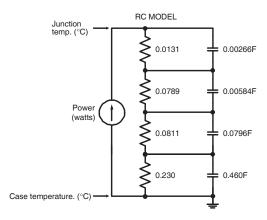
Δ	P٦	[5 (1	NF	32	FI	L	FI	ı

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		4360		
C _{oss}	Output Capacitance	V _{DS} = 25V		895		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		60		
Q_g	Total Gate Charge ^③	V _{GS} = 10V		95		
Q_gs	Gate-Source Charge	V _{DD} = 250V		24		nC
Q_{gd}	Gate-Drain ("Miller") Charge	I _D = 46A @ 25°C		50		
t _{d(on)}	Turn-on Delay Time	RESISTIVE SWITCHING		11		
t _r	Rise Time	V _{GS} = 15V V _{DD} = 250V		15		ns
t _{d(off)}	Turn-off Delay Time	I _D = 46A@ 25°C		25		
t _f	Fall Time	$R_G = 0.6\Omega$		3		
E _{on}	Turn-on Switching Energy [©]	INDUCTIVE SWITCHING @ 25°C V _{DD} = 333V, V _{GS} = 15V		545		
E _{off}	Turn-off Switching Energy	$I_D = 46A, R_G = 5\Omega$		510		μJ
E _{on}	Turn-on Switching Energy ^⑥	INDUCTIVE SWITCHING @ 125°C V _{DD} = 333V V _{GS} = 15V		845		μο
E _{off}	Turn-off Switching Energy	$I_D = 46A, R_G = 5\Omega$		595		

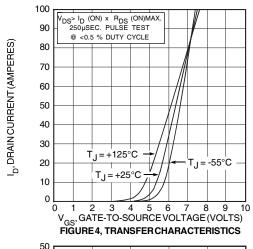
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

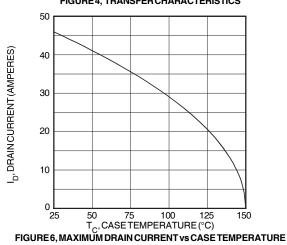
Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT			
I _S	Continuous Source Current (Body Diode)				46	Amne		
I _{SM}	Pulsed Source Current (1) (Body Diode)				184 Amps			
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -46A)			1.3	Volts			
dv/ _{dt}	Peak Diode Recovery dv/dt (5)				15	V/ns		
+	Reverse Recovery Time	T _j = 25°C			280	no		
t _{rr}	$(I_S = -46A, \frac{di}{dt} = 100A/\mu s)$	T _j = 125°C			600	ns		
0	Reverse Recovery Charge	T _j = 25°C		2.28		μC		
Q_{rr}	$(I_S = -46A, \frac{di}{dt} = 100A/\mu s)$	T _j = 125°C		6.41		1 μC		
I _{RRM}	Peak Recovery Current	T _j = 25°C		15.7		Amna		
	$(I_S = -46A, di/_{dt} = 100A/\mu s)$ $T_j = 125^{\circ}C$			23.6		Amps		

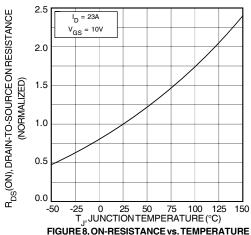

THERMAL CHARACTERISTICS

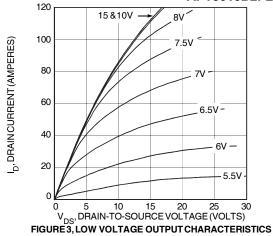

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ hetaJC}$	Junction to Case			0.25	00044
$R_{\theta JA}$	Junction to Ambient			40	°C/W

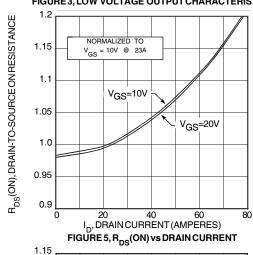
- ① Repetitive Rating: Pulse width limited by maximum junction temperature
- 2 Pulse Test: Pulse width < 380 $\mu s,$ Duty Cycle < 2%
- ③ See MIL-STD-750 Method 3471

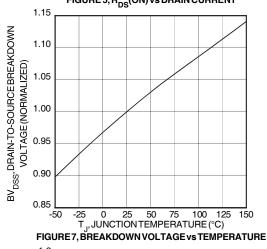

- 4 Starting T_j = +25°C, L = 1.51mH, R_G = 25 Ω , Peak I_L = 46A
- $\mbox{\Large \textcircled{5}}\mbox{\Large dv/}_{\mbox{\Large dt}}$ numbers reflect the limitations of the test circuit rather than the device itself. $I_S \le -I_D 46A$ $di/_{dt} \le 700A/\mu s$ $V_R \le 500V$ $T_J \le 150^{\circ}C$
- 6 Eon includes diode reverse recovery. See figures 18, 20.

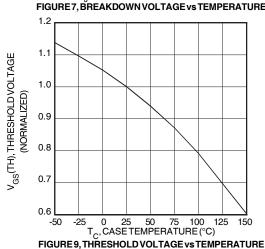

 ${\bf APT\,Reserves\,the\,right\,to\,change, without\,notice, the\,specifications\,and\,inforation\,contained\,herein.}$

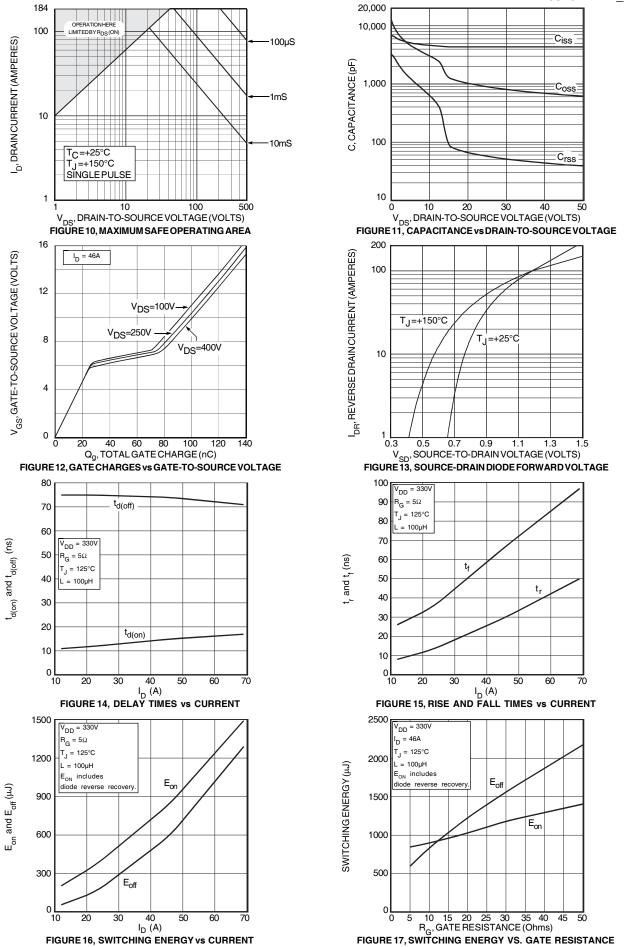





FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL







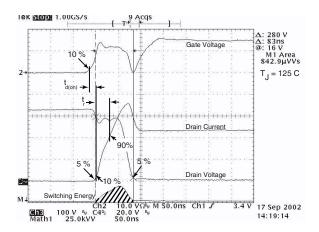


Figure 18, Turn-on Switching Waveforms and Definitions

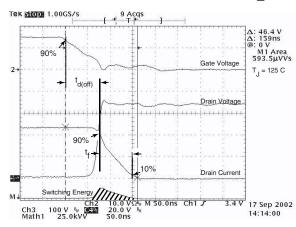


Figure 19, Turn-off Switching Waveforms and Definitions

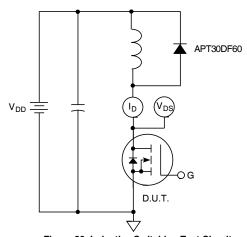


Figure 20, Inductive Switching Test Circuit

T-MAX™ (B2) Package Outline TO-264 (L) Package Outline 4.69 (.185) 5.31 (.209) 4.60 (.181) 5.21 (.205) 15.49 (.610) 16.26 (.640) 1.49 (.059) 2.49 (.098) 1.80 (.071)0 2.01 (.079) 3.10 (.122) 3.48 (.137) 5.38 (.212) 6.20 (.244) 5.79 (.228 6.20 (.244 Drain. 20.80 (.819)^[] 21.46 (.845) Drain 25.48 (1.003) 26.49 (1.043) 4.50 (.177) Max. 2.29 (.090) 2.69 (.106) 2.29 (.090)0 2.69 (.106) 2.13 (.084) 0.40 (.016)^[] 0.79 (.031) 19.81 (.780)0 20.32 (.800) 19.81 (.780)^[] 21.39 (.842) Gate Gate Drain Drain Source Source 0.76 (.030)0 1.30 (.051) 2.79 (.110)0 3.18 (.125) 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs 5.45 (.215) BSC These dimensions are equal to the TO-247 without the mounting hole. Dimensions in Millimeters and (Inches) Dimensions in Millimeters and (Inches)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

M252511FV M254043 DD260N12K-A DD285N02K DD380N16A DDB6U144N16R DDB6U145N16L APT20M11JFLL

APT2X101DL40J APT2X21DC60J APT2X30D40J APT2X30D60J APT2X31DQ120J APT39M60J APT47M60J APT50DF170HJ

APT50M50JLL APT50M75JLLU3 APT50N60JCCU2 APT58M80J APT80F60J DZ540N26K B522F-2-YEC MSTC90-16

MT16HTF12864AZ-800G1 MT18HTF12872PZ-667G1 MT18HTF25672FDZ-667H1D6 MT18HTF25672PZ-80EH1 MT18RTF25672FDZ-667H1D6 MT36HTF51272FZ-667H1D4 MT36HTF51272FZ-667H1D6 MT8HTF12864HTZ-667H1 MT9HTF6472PZ-667G1

MT9HVF12872PZ-80EH1 MT9HVF6472PZ-667G1 ND104N16K 25.163.0653.1 25.330.4753.1 25.330.5253.1 25.334.3253.1

25.320.4853.1 25.320.5253.1 25.325.3653.1 25.326.3253.1 25.326.3553.1 25.330.1653.1 25.330.4753.1 25.330.5253.1 25.334.3253.1