

650V, 70A, $V_{CE(on)}$ = 1.9V Typical

Ultra Fast NPT - IGBT®

The Ultra Fast 650V NPT-IGBT[®] family of products is the newest generation of IGBTs optimized for outstanding ruggedness and best trade-off between conduction and switching losses.

Features

- Low Saturation Voltage
- Low Tail Current
- RoHS Compliant *M*

- Short Circuit Withstand Rated
- High Frequency Switching
- · Low Leakage Current

Combi (IGBT and Diode)

Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is recommended for applications such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

MAXIMUM RATINGS

All Ratings: $T_c = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Ratings	Unit
V _{ces}	Collector Emitter Voltage	650	V
V _{GE}	Gate-Emitter Voltage	±30	v
I _{C1}	Continuous Collector Current @ $T_c = 25^{\circ}C$	134	
I _{C2}	Continuous Collector Current @ T _c = 110°C	65	А
I _{CM}	Pulsed Collector Current ①	260	
SCWT	Short Circuit Withstand Time: V_{CE} = 600V, V_{GE} = 15V, T_{C} =125°C	10	μs
P _D	Total Power Dissipation @ $T_c = 25^{\circ}C$	595	W
T_,T _{stg}	Operating and Storage Junction Temperature Range	-55 to 150	°C
TL	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min	Тур	Max	Unit
V _{(BR)CES}	Collector-Emitter Breakdown Voltage ($V_{GE} = 0V$, $I_{C} = 250uA$)	650			
V _{GE(TH)}	Gate Threshold Voltage ($V_{CE} = V_{GE}$, $I_{C} = 1.0$ mA, $T_{j} = 25$ °C)	3.5	5.0	6.5) / - II -
V _{CE(ON)}	Collector-Emitter On Voltage (V_{GE} = 15V, I_{c} = 70A, T_{j} = 25°C)		1.9	2.4	Volts
	Collector-Emitter On Voltage (V_{GE} = 15V, I_{c} = 70A, T_{j} = 125°C)		2.4		
	Collector-Emitter On Voltage (V_{GE} = 15V, I_{C} = 140A, T_{j} = 25°C)		2.6		
I _{CES}	Collector Cut-off Current (V _{CE} = 650V, V _{GE} = 0V, T _j = 25°C) ⁽²⁾		40	850	μA
	Collector Cut-off Current (V_{CE} = 650V, V_{GE} = 0V, T_j = 125°C) ⁽²⁾		500		
I _{GES}	Gate-Emitter Leakage Current (V _{GE} = ±20V)			±250	nA

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

DYNAMIC CHARACTERISTICS

APT70GR65B2SCD30

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
C _{ies}	Input Capacitance	Capacitance		4250		
C _{oes}	Output Capacitance	$V_{_{\rm GE}} = 0V, V_{_{\rm CE}} = 25V$		847		pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz		415		
V _{GEP}	Gate to Emitter Plateau Voltage	Gate Charge		7.0		V
Q _g ③	Total Gate Charge	V _{GE} = 15V		226	305	
Q _{ge}	Gate-Emitter Charge	V _{CE} = 325V		26	35	nC
Q _{gc}	Gate- Collector Charge	I _c = 70A		104	140	
t _{d(on)}	Turn-On Delay Time	Inductive Switching (25°C)		19		
t,	Current Rise Time	V _{cc} = 433V		45		20
t _{d(off)}	Turn-Off Delay Time	V _{GE} = 15V		170		ns
t _r	Current Fall Time	I _c = 70A		67		
E _{on2} 5	Turn-On Switching Energy	$R_{g} = 4.3\Omega^{4}$		1790	2685	1
E _{off}	Turn-Off Switching Energy	T _J = +25°C		1460	1970	μJ
t _{d(on)}	Turn-On Delay Time	Inductive Switching (125°C)		19		
t,	Current Rise Time	V _{cc} = 433V		45		20
t _{d(off)}	Turn-Off Delay Time	V _{GE} = 15V		190		ns
t _r	Current Fall Time	I _c = 70A		74		
E _{on2} ⁽⁵⁾	Turn-On Switching Energy	$R_{g} = 4.3\Omega^{4}$		1760	2640	1
E _{off}	Turn-Off Switching Energy	T _J = +125°C		1720	2580	μJ

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic	Min	Тур	Max	Unit
R _{ejc}	Junction to Case Thermal Resistance			.21	°C/M
R _{eja}	Junction to Ambient Thermal Resistance			40	0/11
W _T	Deal/age Weight		.22		oz
	Fackage Weight		6.2		g 02

1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.

2 Pulse test: Pulse Width < 380µs, duty cycle < 2%.

3 See Mil-Std-750 Method 3471.

4 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

5 E_{on2} is the energy loss at turn-on and includes the charge stored in the freewheeling diode.

 $_{\text{onz}}^{\text{onz}}$ = 0.5 standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein.

RECTANGULAR PULSE DURATION (SECONDS) Figure 1, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

TYPICAL PERFORMANCE CURVES

AP70GR65B2SCD30

TYPICAL PERFORMANCE CURVES

APT70GR65B2SCD30

ZERO RECOVERY LOW LEAKAGE SIC ANTI-PARALLEL DIODE

MAXIMUM RATINGS

All Ratings: $T_{C} = 25^{\circ}C$ unless otherwise specified.

Symbol	Characteristic / Test Conditions		Ratings	Unit
I _F	Maximum D.C. Forward Compat	$T_c = 25^{\circ}C$	46	
	Maximum D.C. Forward Current	T _c = 85°C	30	Amps
I _{FSM}	Non-Repetitive Forward Surge Current ($T_J = 25^{\circ}C$, $t_p = 10ms$, Half Sine)		247	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions		Min	Тур	Max	Unit
V _F	Forward Voltage	I _F = 30A T _J = 25°C		1.5		Volts
		I _F = 30A, T _J = 150°C		1.9		
Q _c	Total Capactive Charge V _R = 325V, I _F = 30A, di/dt = -500A/ μ s, T _J = 25°C			150		nC
C _T	Junction Capacitance $V_R = 1V$, $T_J = 25^{\circ}C$, f = 1MHz			945		
	Junction Capacitance $V_R = 200V$, $T_J = 25^{\circ}C$, f = 1MHz			138		pF
	Junction Capacitance V_{R} = 400V, T _J = 25°C, f = 1MHz			105		

T-MAX[®] (B2) Package Outline

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below :

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H IGW40N120H3FKSA1 VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 QP12W05S-37A IHFW40N65R55XKSA1 APT70GR120J APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2 IKP20N60TXKSA1