APT75GN60B(G) APT75GN60S(G)
 600 V

Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low $\mathrm{V}_{\mathrm{CE}(\mathrm{ON})}$ and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive $\mathrm{V}_{\mathrm{CE}(\mathrm{ON})}$ temperature coefficient. A built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. Low gate charge simplifies gate drive design and minimizes losses.

- 600V Field Stop
- Trench Gate: Low V_{CE} (on)
- Easy Paralleling
- 6us Short Circuit Capability

- Intergrated Gate Resistor: Low EMI, High Reliability Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS

MAXIMUM RATINGS
All Ratings: $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	APT75GN60B_S(G)	UNIT
$\mathrm{V}_{\text {CES }}$	Collector-Emitter Voltage	600	Volts
$V_{\text {GE }}$	Gate-Emitter Voltage	± 30	
$I_{\text {C1 }}$	Continuous Collector Current ${ }^{8}$ @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	155	Amps
${ }^{\text {C2 }}$	Continuous Collector Current @ $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$	93	
${ }^{\text {CM }}$	Pulsed Collector Current ${ }^{(1)}$	225	
SSOA	Switching Safe Operating Area @ $\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$	225A@ 600V	
$P_{\text {D }}$	Total Power Dissipation	536	Watts
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55 to 175	${ }^{\circ} \mathrm{C}$
T_{L}	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	Units
$V_{(B R) C E S}$	Collector-Emitter Breakdown Voltage ($\left.\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}\right)$	600			Volts
$\mathrm{V}_{\text {GE(TH) }}$	Gate Threshold Voltage $\quad\left(\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right)$	5.0	5.8	6.5	
$V_{\text {CE(ON) }}$	Collector-Emitter On Voltage $\left(\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right)$	1.05	1.45	1.85	
	Collector-Emitter On Voltage ($\left.\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}\right)$		1.87		
${ }^{\text {CES }}$	Collector Cut-off Current ($\left.\mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right)^{(2)}$			25	$\mu \mathrm{A}$
	Collector Cut-off Current ($\left.\mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}\right)^{2}$				
$\mathrm{I}_{\text {GES }}$	Gate-Emitter Leakage Current ($\left.\mathrm{V}_{\mathrm{GE}}= \pm 2 \mathrm{~V}\right)$			600	nA
$\mathrm{R}_{\mathrm{G} \text { (int) }}$	Intergrated Gate Resistor		4		Ω

[^0]DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
$\mathrm{C}_{\text {ies }}$	Input Capacitance	Capacitance$\begin{gathered} V_{G E}=0 \mathrm{~V}, V_{C E}=25 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		4500		pF
$\mathrm{C}_{\text {oes }}$	Output Capacitance			370		
$\mathrm{C}_{\text {res }}$	Reverse Transfer Capacitance			150		
$\mathrm{V}_{\text {GEP }}$	Gate-to-Emitter Plateau Voltage	Gate Charge$\begin{gathered} \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CE}}=300 \mathrm{~V} \\ \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A} \end{gathered}$		9.5		V
Q_{g}	Total Gate Charge ${ }^{(3)}$			485		nC
Q_{ge}	Gate-Emitter Charge			30		
Q_{gc}	Gate-Collector ("Miller") Charge			270		
SSOA	Switching Safe Operating Area	$\begin{gathered} T_{J}=175^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=4.3 \Omega{ }^{\top}, \mathrm{V}_{\mathrm{GE}}= \\ 15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H}, \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V} \end{gathered}$	225			A
SCSOA	Short Circuit Safe Operating Area	$\begin{aligned} & V_{C C}=600 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{~T}_{J}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=4.3 \Omega^{(7)} \end{aligned}$	6			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-on Delay Time	Inductive Switching ($\mathbf{2 5}{ }^{\circ} \mathrm{C}$)$\mathrm{V}_{\mathrm{CC}}=400 \mathrm{~V}$$\mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$$\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}$$\mathrm{R}_{\mathrm{G}}=1.0 \Omega^{(7)}$		47		ns
t_{r}	Current Rise Time			48		
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off Delay Time			385		
t_{f}	Current Fall Time			38		
$\mathrm{E}_{\text {on1 }}$	Turn-on Switching Energy ${ }^{4}$			2500		$\mu \mathrm{J}$
$\mathrm{E}_{\text {on2 }}$	Turn-on Switching Energy (Diode) ${ }^{5}$			3725		
$\mathrm{E}_{\text {off }}$	Turn-off Switching Energy ${ }^{(6)}$			2140		
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-on Delay Time	Inductive Switching ($125^{\circ} \mathrm{C}$)$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=400 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A} \\ \mathrm{R}_{\mathrm{G}}=1.0 \Omega^{(7)} \\ \mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C} \end{gathered}$		47		ns
t_{r}	Current Rise Time			48		
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off Delay Time			430		
t_{f}	Current Fall Time			55		
$\mathrm{E}_{\text {on1 }}$	Turn-on Switching Energy ${ }^{4}$			2600		
$\mathrm{E}_{\text {on2 }}$	Turn-on Switching Energy (Diode) ${ }^{5}$			4525		$\mu \mathrm{J}$
$\mathrm{E}_{\text {off }}$	Turn-off Switching Energy (6)			2585		

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{\text {ӨJC }}$	Junction to Case (IGBT)			.28	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {ӨJC }}$	Junction to Case (DIODE)			N/A	
W_{T}	Package Weight		5.9		gm

(1) Repetitive Rating: Pulse width limited by maximum junction temperature.
(2) For Combi devices, $I_{\text {ces }}$ includes both IGBT and FRED leakages
(3) See MIL-STD-750 Method 3471.
(4) $\mathrm{E}_{\mathrm{on} 1}$ is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
(5) $\mathrm{E}_{\text {on2 }}$ is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
(6) $\mathrm{E}_{\text {off }}$ is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
(7) R_{G} is external gate resistance, not including $R_{G(i n t)}$ nor gate driver impedance. (MIC4452)
(8) Continuous current limited by package pin temperature to 100A.

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

$\mathrm{V}_{\text {CE }}$, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics $\left(\mathrm{T}_{\mathrm{j}}=\mathbf{2 5} \mathbf{5}^{\circ} \mathrm{C}\right)$

FIGURE 3, Transfer Characteristics
V_{CE}, COLLECTOR-TO-EMITTER VOLTAGE (V)

V_{GE}, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage

FIGURE 7, Threshold Voltage vs. Junction Temperature

CE'
FIGURE 2, Output Characteristics $\left(T_{」}=125^{\circ} \mathrm{C}\right)$

FIGURE 4, Gate Charge

FIGURE 6, On State Voltage vs Junction Temperature

FIGURE 8, DC Collector Current vs Case Temperature

$\mathrm{E}_{\mathrm{ON} 2}$, TURN ON ENERGY LOSS (mJ)

FIGURE 13, Turn-On Energy Loss vs Collector Current

FIGURE 15, Switching Energy Losses vs. Gate Resistance

FIGURE 10, Turn-Off Delay Time vs Collector Current

FIGURE 12, Current Fall Time vs Collector Current

I_{CE}, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current

FIGURE 16, Switching Energy Losses vs Junction Temperature

Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL

Figure 20, Operating Frequency vs Collector Current

Figure 21, Inductive Switching Test Circuit

Figure 22, Turn-on Switching Waveforms and Definitions

Figure 23, Turn-off Switching Waveforms and Definitions

TO-247 (B) Package Outline

D3PAK (S) Package Outline

Microsemi.

Power Matters."
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996 email: sales.support@microsemi.com www.microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense \& security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.
©2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Transistors category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0\#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB

IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2
IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085

FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0\#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1

[^0]:
 These Devices are Sensitive to Electrostatic Discharge Proper Handling Procedures Should Be Followed.

