

1200V, 85A, $V_{ce(on)} = 2.5V$ Typical

Ultra Fast NPT - IGBT®

The Ultra Fast NPT - IGBT® is a new generation of high voltage power IGBTs. Using Non-Punch-Through Technology, the Ultra Fast NPT-IGBT® offers superior ruggedness and ultrafast switching speed.

TO-247 Max TO-264

Features

- Low Saturation Voltage
- Low Tail Current
- RoHS Compliant

- Short Circuit Withstand Rated
- High Frequency Switching
- Ultra Low Leakage Current

Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is recommended for applications such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

MAXIMUM RATINGS

All Ratings:	$T_C = 25^{\circ}C$	unless	otherwise	specified.
--------------	---------------------	--------	-----------	------------

Symbol	Parameter	Ratings	Unit
V _{ces}	Collector Emitter Voltage	1200	V
V_{GE}	Gate-Emitter Voltage	±30	l v
I _{C1}	Continuous Collector Current @ T _C = 25°C	170	
I _{C2}	Continuous Collector Current @ T _C = 100°C	85	Α
I _{CM}	Pulsed Collector Current ①	340	
SCWT	Short Circuit Withstand Time: V _{CE} = 600V, V _{GE} = 15V, T _C =125°C	10	μs
P _D	Total Power Dissipation @ T _c = 25°C	962	W
T_{J},T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C
T _L	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300	°C

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min	Тур	Max	Unit
V _{(BR)CES}	Collector-Emitter Breakdown Voltage (V _{GE} = 0V, I _C = 1.0mA)	1200			
$V_{\text{GE(TH)}}$	Gate Threshold Voltage $(V_{CE} = V_{GE}, I_{C} = 2.5 \text{mA}, T_{j} = 25 ^{\circ}\text{C})$	3.5	5.0	6.5	\ / - I4 -
.,	Collector-Emitter On Voltage (V _{GE} = 15V, I _C = 85A, T _j = 25°C)		2.5	3.2	Volts
$V_{CE(ON)}$	Collector-Emitter On Voltage (V _{GE} = 15V, I _C = 85A, T _j = 125°C)		3.3		
	Collector-Emitter On Voltage (V _{GE} = 15V, I _C = 170A, T _j = 25°C)		3.5		
I _{CES}	Collector Cut-off Current (V _{CE} = 1200V, V _{GE} = 0V, T _j = 25°C) ②		10	1000	μA
CES	Collector Cut-off Current (V _{CE} = 1200V, V _{GE} = 0V, T _j = 125°C) (2)		100		
I _{GES}	Gate-Emitter Leakage Current (V _{GE} = ±20V)			±250	nA

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
C _{ies}	Input Capacitance	Capacitance		8400			
C _{oes}	Output Capacitance	$V_{GE} = 0V, V_{CE} = 25V$		725		pF	
C _{res}	Reverse Transfer Capacitance	f = 1MHz		190			
V _{GEP}	Gate to Emitter Plateau Voltage	Cata Charas		7.5		V	
Q ³	Total Gate Charge	Gate Charge		490	660		
Q_{ge}	Gate-Emitter Charge	V _{GE} = 15V		60	85	0	
Q_{gc}	Gate- Collector Charge	$V_{CE} = 600V$ $I_{C} = 85A$		230	320	nC	
t _{d(on)}	Turn-On Delay Time	Inductive Switching (25°C)		43			
t _r	Current Rise Time	V _{cc} = 600V		70		20	
t _{d(off)}	Turn-Off Delay Time	V _{GE} = 15V		300		ns	
t _f	Current Fall Time	I _C = 85A		85			
E _{on2} 5	Turn-On Switching Energy	$R_{_{\rm G}} = 4.3 \Omega^{(4)}$		6000	9000	1	
E _{off}	Turn-Off Switching Energy	T _J = +25°C		3800	5700	μJ	
t _{d(on)}	Turn-On Delay Time	Inductive Switching (125°C)		43			
t,	Current Rise Time	V _{cc} = 600V		70			
t _{d(off)}	Turn-Off Delay Time	V _{GE} = 15V		350	ns		
t _r	Current Fall Time	I _C = 85A		95			
E _{on2}	Turn-On Switching Energy	$R_{\rm G} = 4.3 \Omega^{(4)}$		7800	11,700	1	
E _{off}	Turn-Off Switching Energy	T _J = +125°C		4900	7350	μJ	

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	ol Characteristic		Min	Тур	Max	Unit
$R_{\theta JC}$	Junction to Case Thermal Resistance (IGBT)				.13	°C/W
$R_{\theta JA}$	Junction to Ambient Thermal Resistance				40	C/VV
W _T		B2		.22		oz
	Package Weight	D2		6		g
	rackage vveignit			.36		oz
		L		10		g

- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- 2 Pulse test: Pulse Width < $380\mu s$, duty cycle < 2%.
- 3 See Mil-Std-750 Method 3471.
- 4 $R_{\rm g}$ is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
- 5 E_{on2} is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode.
- 6 E_{off} is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

RECTANGULAR PULSE DURATION (SECONDS)
Figure 1, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

FIGURE 8, Threshold Voltage vs Junction Temperature

FIGURE 9, DC Collector Current vs Case Temperature

FIGURE 16, Swiitching Energy vs Junction Temperature

T-MAX™ (B2) Package Outline

These dimensions are equal to the TO-247 without the mounting hole. Dimensions in Millimeters and (Inches)

TO-264 (L) Package Outline

Dimensions in Millimeters and (Inches)

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

F3L400R07ME4_B22 F4-50R07W2H3_B51 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD400R33KF2C-K
FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF200R06YE3 FF300R12KE4_E FF450R12ME4P FF600R12IP4V FP10R06W1E3_B11
FP20R06W1E3 FP50R12KT3 FP75R07N2E4_B11 FS10R12YE3 FS150R07PE4 FS150R12PT4 FS200R12KT4R FS50R07N2E4_B11
FZ1000R33HE3 FZ1800R17KF4 DD250S65K3 DF1000R17IE4 DF1000R17IE4D_B2 DF1400R12IP4D DF200R12PT4_B6
DF400R07PE4R_B6 BSM75GB120DN2_E3223c-Se F3L300R12ME4_B22 F3L75R07W2E3_B11 F4-50R12KS4_B11
F475R07W1H3B11ABOMA1 FD1400R12IP4D FD200R12PT4_B6 FD800R33KF2C-K FF1200R17KP4_B2 FF300R17KE3_S4
FF300R17ME4_B11 FF401R17KF6C_B2 FF650R17IE4D_B2 FF900R12IP4D FF900R12IP4DV STGIF7CH60TS-L FP50R07N2E4_B11
FS100R07PE4 FS150R07N3E4 B11 FS150R17N3E4 FS150R17PE4