ROHS
Available on commercial versions

PNP Silicon Small Signal Transistor
 Qualified per MIL-PRF-19500/382

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

This 2N2944A through 2N2946A PNP silicon transistor device is military qualified up to a JANTXV level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N2944A thru 2N2946A series.
- JAN, JANTX, and JANTXV qualifications per MIL-PRF-19500/382 available.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Low profile metal can package.
- ESD to Class 3 per MIL-STD-750, method 1020.

MAXIMUM RATINGS @ $+25^{\circ} \mathrm{C}$ unless specified otherwise.

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_{J} and $\mathrm{T}_{\text {STG }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction-to-Ambient	$\mathrm{R}_{\text {®JA }}$	435	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Collector Current (dc)	I_{C}	-100	mA
Emitter to Base voltage (static), 2N2944A collector open $2 N 2945$ A 2N2946A	$V_{\text {Ebo }}$	$\begin{aligned} & -15 \\ & -25 \\ & -40 \\ & \hline \end{aligned}$	V
Collector to Base voltage (static), 2N2944A emitter open 2N2945A 2N2946A	$\mathrm{V}_{\text {CBO }}$	$\begin{aligned} & -15 \\ & -25 \\ & -40 \end{aligned}$	V
Collector to Emitter voltage (static), 2N2944A base open $2 N 2945 A$ 2N2946A	$\mathrm{V}_{\text {CEO }}$	$\begin{aligned} & -10 \\ & -20 \\ & -35 \\ & \hline \end{aligned}$	V
$\begin{array}{ll}\text { Emitter to Collector voltage } & \text { 2N2944A } \\ & \text { 2N2945A } \\ & \text { 2N2946A }\end{array}$	$\mathrm{V}_{\mathrm{ECO}}$	$\begin{aligned} & -10 \\ & -20 \\ & -35 \end{aligned}$	V
Total Power Dissipation, all terminals @ $\mathrm{T}_{\mathrm{A}}=+25{ }^{\circ} \mathrm{C}{ }^{(1)}$	$\mathrm{P}_{\text {T }}$	400	mW

Notes: 1. Derate linearly $2.30 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

MSC - Lawrence
6 Lake Street, Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600

Fax: (978) 689-0803
MSC - Ireland
Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 656840044
Fax: +353 (0) 656822298
Website:
www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Nickel plated kovar, glass seals.
- TERMINALS: Gold plating over nickel, solder dipped, kovar.
- MARKING: Part number, date code, manufacturer's ID.
- WEIGHT: 0.234 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS \& DEFINITIONS

SYMBOLS \& DEFINITIONS	
Symbol	Definition
I_{B}	Base current (dc).
I_{E}	Emitter current (dc).
V_{CB}	Collector to base voltage (dc).
V_{EB}	Emitter to base voltage (dc).
$\mathrm{V}_{(B R)}$	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ unless otherwise noted.

Characteristic		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS:					
Collector-Emitter Breakdown Voltage $\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}$	$\begin{aligned} & \text { 2N2944A } \\ & \text { 2N2945A } \\ & \text { 2N2946A } \end{aligned}$	V(BR)CEO	$\begin{aligned} & -10 \\ & -20 \\ & -35 \end{aligned}$		V
Emitter-Collector Breakdown Voltage $\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0$	$\begin{aligned} & \text { 2N2944A } \\ & \text { 2N2945A } \\ & \text { 2N2946A } \end{aligned}$	$V(B R) E C O$	$\begin{aligned} & -10 \\ & -20 \\ & -35 \end{aligned}$		V
Collector-Base Cutoff Current $V c b=-15 \mathrm{~V}$ V св $=-25 \mathrm{~V}$ $V c b=-40 \mathrm{~V}$	$\begin{aligned} & \text { 2N2944A } \\ & \text { 2N2945A } \\ & \text { 2N2946A } \end{aligned}$	ICBO	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		$\mu \mathrm{A}$
Emitter-Base Cutoff Current $V_{E B}=-12 V$ $V_{\text {eb }}=-20 \mathrm{~V}$ $V_{E b}=-32 \mathrm{~V}$	$\begin{aligned} & \text { 2N2944A } \\ & \text { 2N2945A } \\ & \text { 2N2946A } \\ & \hline \end{aligned}$	IEBO		$\begin{array}{r} -0.1 \\ -0.2 \\ -0.5 \\ \hline \end{array}$	$\eta \mathrm{A}$

ON CHARACTERISTICS: ${ }^{(1)}$

Forward-Current Transfer Ratio $\begin{array}{ll}\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-0.5 \mathrm{~V} & \text { 2N2944A } \\ & \text { 2N2945A } \\ & \text { 2N2946A }\end{array}$	hFE	$\begin{gathered} 100 \\ 70 \\ 50 \end{gathered}$		
Forward-Current Transfer Ratio (inverted connection) $\begin{array}{ll}\mathrm{I}_{\mathrm{E}}=-200 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{EC}}=-0.5 \mathrm{~V} & \text { 2N2944A } \\ & \text { 2N2945A } \\ & \text { 2N2946A }\end{array}$	hFE(inv)	$\begin{aligned} & 50 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$		
Emitter-Collector Offset Voltage $I_{B}=-200 \mu A, I_{E}=0$ $2 N 2944 A$ $2 N 2945 A$ $I_{B}=-1.0 m A, I_{E}=0$ $2 N 2946 A$ $2 N 2944 A$ $2 N 2945 A$ $I_{B}=-2.0 m A, I_{E}=0$ $2 N 2946 A$ $2 N 2944 A$ $2 N 2945 A$ $2 N 2946 A$	VEC(ofs)		$\begin{aligned} & -0.3 \\ & -0.5 \\ & -0.8 \\ & -0.6 \\ & -1.0 \\ & -2.0 \\ & -1.0 \\ & -1.6 \\ & -2.5 \end{aligned}$	mV

DYNAMIC CHARACTERISTICS:

Emitter-Collector On-State Resistance $\mathrm{I}_{\mathrm{B}}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{e}}=100 \mu \mathrm{~A}$ ac (rms) $\mathrm{f}=1.0 \mathrm{kHz}$ $\begin{aligned} & \mathrm{I}_{\mathrm{B}}=-1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{e}}=100 \mu \mathrm{~A} \mathrm{ac} \mathrm{(rms)} \\ & \mathrm{f}=1.0 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { 2N2944A } \\ & \text { 2N2945A } \\ & \text { 2N2946A } \\ & \text { 2N2944A } \\ & \text { 2N2945A } \\ & \text { 2N2946A } \end{aligned}$	$\mathrm{r}_{\mathrm{ec}}{ }^{(0 n)}$		$\begin{aligned} & 10 \\ & 12 \\ & 14 \\ & 4.0 \\ & 6.0 \\ & 8.0 \end{aligned}$	Ω
Magnitude of Small-Signal Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-6.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	$\begin{aligned} & \text { 2N2944A } \\ & \text { 2N2945A } \\ & \text { 2N2946A } \end{aligned}$	\|hfel	$\begin{aligned} & 15 \\ & 10 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 55 \end{aligned}$	
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=-6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$		Cobo		10	pF
Input Capacitance $\mathrm{V}_{\mathrm{EB}}=-6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$		Cibo		6.0	pF

(1) Pulse Test: Pulse Width $=300$ s, duty cycle 2.0%.

GRAPHS

FIGURE 1 - Temperature-Power Derating Curve

PACKAGE DIMENSIONS

Ltr.	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
CD	. 178	. 195	4.52	4.95	
CH	. 065	. 085	1.65	2.16	
HD	. 209	. 230	5.31	5.84	
LC	. 100 TP		2.54 TP		5
LD	. 016	. 021	0.41	0.53	
LL	. 500	1.750	12.70	44.45	6
LU	. 016	. 019	0.41	0.48	6
L1		. 050		1.27	6
L2	. 250		6.35		6
Q		. 040		1.02	3
TL	. 028	. 048	0.71	1.22	8
TW	. 036	. 046	0.91	1.17	4
r		. 010		0.25	9
$\boldsymbol{\alpha}$	$45^{\circ} \mathrm{TP}$		$45^{\circ} \mathrm{TP}$		5

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Symbol TL is measured from HD maximum.
4. Details of outline in this zone are optional.
5. Leads at gauge plane .054 inch $(1.37 \mathrm{~mm})+.001$ inch $(0.03 \mathrm{~mm})-.000$ inch $(0.00 \mathrm{~mm})$ below seating plane shall be within .007 inch $(0.18 \mathrm{~mm})$ radius of TP relative to tab. Device may be measured by direct methods or by gauge.
6. Symbol LU applies between L_{1} and L_{2}. Dimension LD applies between L_{2} and $L L$ minimum.
7. Lead number three is electrically connected to case.
8. Beyond r maximum, TW shall be held for a minimum length of .011 inch (0.28 mm).
9. Symbol r applied to both inside corners of tab.
10. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
11. Lead 1 is emitter, lead 2 is base, and lead 3 is collector.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B

