

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

NPN POWER SILICON SWITCHING TRANSISTOR

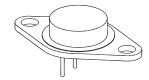
Qualified per MIL-PRF-19500/455

DEVICES

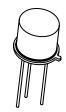
2N5664 2N5666 2N5667 2N5665 2N5666S 2N5667S

2N5666U3

JAN
JANTX
JANTV
JANS

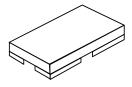

ABSOLUTE MAXIMUM RATINGS ($T_C = +25$ °C unless otherwise noted)

Parameters / Test Conditions	Syn	abol	2N5664 2N5666, S	2N5665 2N5667, S	Unit
Collector-Emitter Voltage	V_{CEO}		200	300	Vdc
Collector-Base Voltage	V_{CBO}		250	400	Vdc
Emitter-Base Voltage	V_{EBO}		6.0		Vdc
Base Current	I	I _B 1.0		Adc	
Collector Current	I_{C}		5.0		Adc
		2N5664 2N5665	2N5666, S 2N5667, S	2N5666U3	
Total 1/ @ $T_A = +25$ °C Power Dissipation @ $T_C = +100$ °C	P_{T}	2.5 30	1.2 15	1.5 35	W
Operating & Storage Junction Temperature Range	T_J , T_{stg}	-65 to +200		°C	


Note: 1) Consult 19500/455 for thermal derating curves.

ELECTRICAL CHARACTERISTICS ($T_C = +25$ °C, unless otherwise noted)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERTICS	OFF CHARACTERTICS				
Collector-Emitter Breakdown Vo $I_C = 10$ mAdc	oltage 2N5664, 2N5666 2N5665, 2N5667	V _{(BR)CER}	250 400		Vdc
Emitter-Base Breakdown Voltag $I_E = 10\mu Adc$	e	V _{(BR)EBO}	6.0		Vdc
	2N5664, 2N5666 2N5665, 2N5667	I_{CES}		0.2 0.2	μAdc
$\begin{aligned} & \text{Collector-Base Cutoff Current} \\ & V_{\text{CB}} = 200 \text{Vdc} \\ & V_{\text{CB}} = 250 \text{Vdc} \\ & V_{\text{CB}} = 300 \text{Vdc} \\ & V_{\text{CB}} = 400 \text{Vdc} \end{aligned}$	2N5664, 2N5666 2N5665, 2N5667	I_{CBO}		0.1 1.0 0.1 1.0	μAdc mAdc μAdc mAdc


TO-66 (TO-213AA) 2N5664, 2N5665

TO-5 2N5666, 2N5667

TO-39 (TO-205AD) 2N5666S, 2N5667S

U-3 2N5666U3

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

NPN POWER SILICON SWITCHING TRANSISTOR

Qualified per MIL-PRF-19500/455

ELECTRICAL CHARACTERISTICS (con't)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERTICS					
Forward-Current Transfer Ratio					
$I_C = 0.5 \text{Adc}, V_{CE} = 2.0 \text{Vdc}$	2N5664, 2N5666 2N5665, 2N5667		40 25		
$I_C = 1.0 Adc, V_{CE} = 5.0 Vdc$	2N5664, 2N5666 2N5665, 2N5667	$h_{ m FE}$	40 25	120 75	
$I_C = 3.0 \text{Adc}, V_{CE} = 5.0 \text{Vdc}$	2N5664, 2N5666 2N5665, 2N5667		15 10		
$I_C = 5.0 Adc, V_{CE} = 5.0 Vdc$	All Types		5.0		
Collector-Emitter Saturation Voltage					
$I_C = 3.0 \text{Adc}, I_B = 0.3 \text{Adc}$	2N5664, 2N5666			0.4	
$I_C = 3.0 Adc, I_B = 0.6 Adc$	2N5665, 2N5667	V _{CE(sat)}		0.4	Vdc
$I_C = 5.0 \text{Adc}, I_B = 1.0 \text{Adc}$	All Types			1.0	
Base-Emitter Saturation Voltage					
$I_C = 3.0 \text{Adc}, I_B = 0.3 \text{Adc}$	2N5664, 2N5666			1.2	
$I_C = 3.0 Adc, I_B = 0.6 Adc$	2N5665, 2N5667	$V_{\text{BE}(\text{sat})}$		1.2	Vdc
$I_C = 5.0 \text{Adc}, I_B = 1.0 \text{Adc}$	All Types			1.5	

DYNAMIC CHARACTERISTICS

Forward Current Transfer Ratio $I_C = 0.5 Adc, V_{CE} = 5.0 Vdc, f = 10 MHz$	h _{fe}	2.0	7.0	
Output Capacitance $V_{CB} = 10 V dc, \ I_E = 0, \ 100 kHz \le f \le 1.0 MHz$	$C_{\rm obo}$		120	pF

SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-On Time					
$V_{CC} = 100 \text{Vdc}; I_C = 1.0 \text{Adc}; I_{B1} = 30 \text{mAdc}$		t _{on}		0.25	μs
Turn-Off Time					
	2NECCA 2NECCC			1.5	
$V_{CC} = 100 \text{Vdc}; I_C = 1.0 \text{Adc}; I_{B1} = -I_{B2} = 50 \text{mAdc}$	2N5664, 2N5666 2N5665, 2N5667	$t_{ m off}$		1.5 2.0	μs
	2113003, 2113007			2.0	

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

NPN POWER SILICON SWITCHING TRANSISTOR

Qualified per MIL-PRF-19500/455

SAFE OPERATING AREA

DC Tests $T_C = 100$ °C, 1 Cycle, $t \ge 1.0$ s, $t_r + t_f = 10 \mu s$	
Test 1	
$V_{CE} = 6.0 \text{Vdc}, I_{C} = 5.0 \text{Adc}$	2N5664 , 2N5665
$V_{CE} = 3.0 \text{Vdc}, I_{C} = 5.0 \text{Adc}$	2N5666, 2N5667
Test 2	
$V_{CE} = 32 \text{Vdc}, I_C = 0.75 \text{Adc}$	2N5664
$V_{CE} = 40 \text{Vdc}, I_{C} = 0.75 \text{Adc}$	2N5665
$V_{CE} = 29Vdc, I_C = 0.4Adc$	2N5666
$V_{CE} = 37.5 \text{Vdc}, I_{C} = 0.4 \text{Adc}$	2N5667
Test 3	
$V_{CE} = 200 \text{Vdc}, I_C = 29 \text{mAdc}$	2N5664
$V_{CE} = 200 \text{Vdc}, I_C = 19 \text{mAdc}$	2N5666
$V_{CE} = 300 \text{Vdc}, I_C = 21 \text{mAdc}$	2N5665
$V_{CE} = 300 \text{Vdc}, I_C = 14 \text{mAdc}$	2N5667

⁽²⁾ Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001