

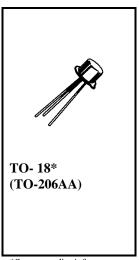
NPN LOW POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/253

Devices Qualified Level

2N930

JAN JANTX JANTXV


MAXIMUM RATINGS

Ratings	Symbol	Value	Units
Collector-Emitter Voltage	V_{CEO}	45	Vdc
Collector-Base Voltage	V_{CBO}	60	Vdc
Emitter-Base Voltage	V_{EBO}	6.0	Vdc
Collector Current	I_{C}	30	mAdc
Total Power Dissipation @ $T_A = +25^0C^{(1)}$ @ $T_C = +25^0C^{(2)}$	P_{T}	300	mW
$@ T_{C} = +25^{\circ}C^{(3)}$	•	600	
Operating & Storage Junction Temperature Range	T_{J} , T_{stg}	-55 to +200	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	97	⁰ C/W

- 1) Derate linearly 2.0 mW/ $^{\circ}$ C above $T_A = +25^{\circ}$ C
- 2) Derate linearly $4.0 \text{ mW}/^{0}\text{C}$ above $T_{C} = +25^{0}\text{C}$

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS ($T_C = +25^{\circ}C$ unless otherwise noted)

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage	V			Vdc
$I_C = 10 \text{ mAdc}$	$V_{(BR)CEO}$	45		vac
Collector-Base Cutoff Current				۸
$V_{CB} = 60 \text{ Vdc}$	I_{CBO}		10	μAdc ηAdc
$V_{CB} = 45 \text{ Vdc}$			10	TIAGC
Emitter-Base Cutoff Current				۸
$V_{EB} = 6.0 \text{ Vdc}$	I_{EBO}		10	μAdc ηAdc
$V_{EB} = 5.0 \text{ Vdc}$			5.0	HAde
Collector-Emitter Cutoff Current	т			m A J.
$V_{CE} = 45 \text{ Vdc}$	I_{CES}		2.0	ηAdc
Collector-Base Cutoff Current	т			m A J.
$V_{CE} = 5.0 \text{ Vdc}$	I_{CEO}		2.0	ηAdc

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

2N930, JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (3)				
Forward-Current Transfer Ratio				
$I_C = 10 \mu\text{Adc}, V_{CE} = 5.0 \text{Vdc}$	1.	100 150	300	
$I_C = 500 \mu\text{Adc}, V_{CE} = 5.0 \text{Vdc}$	$h_{ m FE}$			
$I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$			600	
Collector-Emitter Saturation Voltage	17			Vdc
$I_C = 10 \text{ mAdc}, I_B = 0.5 \text{ mAdc}$	V _{CE(sat)}		1.0	
Base-Emitter Saturation Voltage	V	0.6		Vdc
$I_C = 10 \text{ mAdc}, I_B = 0.5 \text{ mAdc}$	$V_{BE(sat)}$		1.0	vuc
DYNAMIC CHARACTERISTICS				
Magnitude of Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}			
$I_C = 500 \mu Adc, V_{CE} = 5.0 Vdc, f = 30 MHz$		1.5	6.0	
Small-Signal Short-Circuit Forward Current Transfer Ratio	h			
$I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$	h _{fe}	150	600	
Small-Signal Short-Circuit Input Impedance	h_{ib}	25	32	Ω
$V_{CB} = 5.0 \text{ Vdc}, I_E = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz}$	nib			
Small-Signal Short-Circuit Output Admittance	h .			μΩ
$V_{CB} = 5.0 \text{ Vdc}, I_E = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz}$	h _{ob}		1.0	
Output Capacitance	$C_{ m obo}$			pF
$V_{CB} = 5.0 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$			8.0	pı.
Noise Figure				
$V_{CE} = 5 \text{ Vdc}$; $I_C = 10 \mu Adc$; $R_g = 10 k\Omega$	NF			
Test 1: $f = 100 \text{ Hz}$			5	dB
Test 2: $f = 1.0 \text{ kHz}$			3	
Test 3: $f = 10 \text{ kHz}$			3	

⁽³⁾ Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001