Qualified Levels: JANSM, JANSD,

JANSP, JANSL, and **JANSR**

RADIATION HARDENED LOW POWER NPN SILICON TRANSISTOR

Qualified per MIL-PRF-19500/391

DESCRIPTION

This NPN ceramic surface mount device is RAD hard qualified for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent to JEDEC registered 2N3700.
- RHA level JAN qualifications per MIL-PRF-19500/391 (see part nomenclature for all options).

APPLICATIONS / BENEFITS

- Ceramic UB surface mount package.
- Lightweight.
- Low power.
- Military and other high-reliability applications.

Also available in:

UB Package

TO-18 (TO-206AA)

TO-39 (TO-205AD)

JANS 2N3019, 2N3019S

TO-46 (TO-206AB)

(leaded) **JANS_2N3057A**

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-65 to +200	°C
Thermal Impedance Junction-to-Ambient	R _{OJA}	325	°C/W
Thermal Impedance Junction-to-Case	$R_{\Theta JSP}$	90	°C/W
Collector-Emitter Voltage	V_{CEO}	80	V
Collector-Base Voltage	V _{CBO}	140	V
Emitter-Base Voltage	V_{EBO}	7.0	V
Collector Current	I _C	1.0	Α
Total Power Dissipation: @ $T_A = +25 ^{\circ}C^{(1)}$	P _D	0.5	W

1. Derate linearly 6.6 mW/°C for $T_A \ge +25$ °C. Notes:

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- · CASE: Ceramic.
- TERMINALS: Gold plating over nickel under plate.
- MARKING: Part number, date code, manufacturer's ID, and serial number.
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: < 0.04 Grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

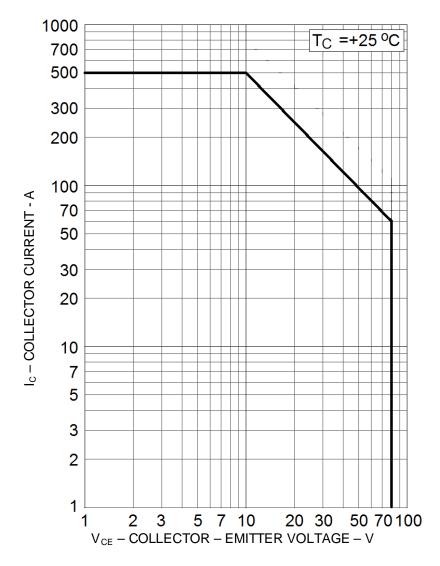
	SYMBOLS & DEFINITIONS						
Symbol	Definition						
f	frequency						
I _B	Base current (dc)						
Ι _Ε	Emitter current (dc)						
T _A	Ambient temperature						
Tc	Case temperature						
V _{CB}	Collector to base voltage (dc)						
V _{CE}	Collector to emitter voltage (dc)						
V_{EB}	Emitter to base voltage (dc)						

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit					
OFF CHARACTERTICS									
Collector-Emitter Breakdown Current I _C = 30 mA	V _{(BR)CEO}	80		V					
Collector-Base Cutoff Current V _{CB} = 140 V	I _{CBO}		10	μΑ					
Emitter-Base Cutoff Current V _{EB} = 7 V	I _{EBO1}		10	μΑ					
Collector-Emitter Cutoff Current V _{CE} = 90 V	I _{CES}		10	ηА					
Emitter-Base Cutoff Current V _{EB} = 5.0 V	I _{EBO2}		10	ηА					
ON CHARACTERISTICS (1)	<u> </u>								
Forward-Current Transfer Ratio $I_C = 150$ mA, $V_{CE} = 10$ V $I_C = 0.1$ mA, $V_{CE} = 10$ V $I_C = 10$ mA, $V_{CE} = 10$ V $I_C = 500$ mA, $V_{CE} = 10$ V $I_C = 500$ mA, $V_{CE} = 10$ V $I_C = 1.0$ A, $V_{CE} = 10$ V	$A, V_{CE} = 10 \text{ V}$ 100 $A, V_{CE} = 10 \text{ V}$ 50 $A, V_{CE} = 10 \text{ V}$ h_{FE} 90 $A, V_{CE} = 10 \text{ V}$ 50								
Collector-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$	V _{CE(sat)}		0.2 0.5	V					
Base-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	V _{BE(sat)}		1.1	V					

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward Current Transfer Ratio	h	80	400	
$I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 1.0 \text{ kHz}$	h _{fe}	80	400	
Magnitude of Small-Signal Short-Circuit Forward Current				
Transfer Ratio	h _{fe}	5.0	20	
$I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}, f = 20 \text{ MHz}$				
Output Capacitance	Cobo		12	pF
$V_{CB} = 10 \text{ V}, I_{E} = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	Cobo		12	ρι
Input Capacitance	C _{ibo}		60	рF
$V_{EB} = 0.5 \text{ V}, I_{C} = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	Oibo		00	PΓ


(1) Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

SAFE OPERATION AREA (See SOA graph below and MIL-STD-750, method 3053)

DC Tests $T_C = 25$ °C, 1 cycle, $t = 10$ m	s
Test 1 2N3700UB	$V_{CE} = 10 \text{ V}$ $I_{C} = 180 \text{ mA}$
Test 2 2N3700UB	$V_{CE} = 40 \text{ V}$ $I_C = 45 \text{ mA}$
Test 3 2N3700UB	$V_{CE} = 80 \text{ V}$ $I_{C} = 22.5 \text{ mA}$

Maximum Safe Operating Area

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

POST RADIATION ELECTRICAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Collector to Base Cutoff Current V _{CB} = 140 V	I _{CBO}		20	μΑ
Emitter to Base Cutoff Current V _{EB} = 7 V	I _{EBO}		20	μΑ
Collector to Emitter Breakdown Voltage I _C = 30 mA	V _{(BR)CEO}	80		V
Collector-Emitter Cutoff Current V _{CE} = 90 V	I _{CES}		20	ηΑ
Emitter-Base Cutoff Current V _{EB} = 5.0 V	I _{EBO}		20	ηΑ
Forward-Current Transfer Ratio $^{(2)}$ $I_C = 150$ mA, $V_{CE} = 10$ V		[50]	300	
$I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$		[25]	300	
$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	[h _{FE}]	[45]		
$I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V}$		[25]	300	
$I_C = 1 \text{ A}, V_{CE} = 10 \text{ V}$		[7.5]		
Collector-Emitter Saturation Voltage $I_C = 150$ mA, $I_B = 15$ mA $I_C = 500$ mA, $I_B = 50$ mA	V _{CE(sat)}		0.23 0.58	V
Base-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	V _{BE(sat)}		1.27	V

⁽²⁾ See method 1019 of MIL-STD-750 for how to determine $[h_{FE}]$ by first calculating the delta $(1/h_{FE})$ from the pre- and post-radiation h_{FE} . Notice the $[h_{FE}]$ is not the same as h_{FE} and cannot be measured directly. The $[h_{FE}]$ value can never exceed the pre-radiation minimum h_{FE} that it is based upon.

GRAPHS

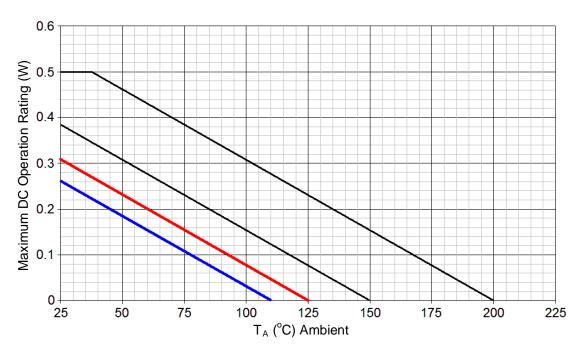


FIGURE 1
Temperature-Power Derating (R_{OJA})

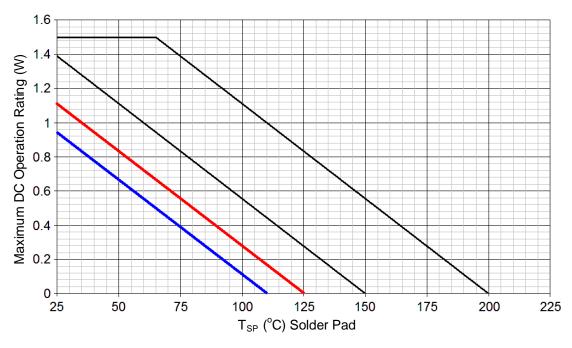
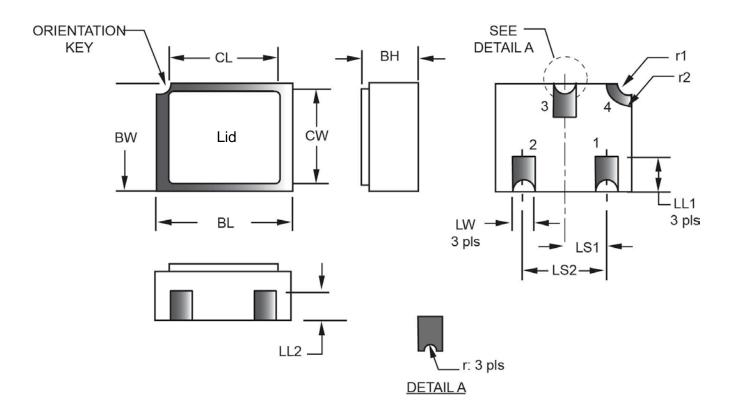



FIGURE 2 Temperature-Power Derating ($R_{\Theta JSP}$)

PACKAGE DIMENSIONS

	Dimensions						Dimensions				
Symbol	Inch		Millimeters		Note Symbol		Inch		Millimeters		Note
	Min	Max	Min	Max			Min	Max	Min	Max	
ВН	.046	.056	1.17	1.42		LS₁	.036	.040	.091	1.02	
BL	.115	.128	2.92	3.25		LS ₂	.071	.079	1.81	2.01	
BW	.085	.108	2.16	2.74		LW	.016	.024	0.41	0.61	
CL		.128		3.25		r		.008		.203	
CW		.108		2.74		r ₁		.012		.305	
LL ₁	.022	.038	0.56	0.96		r ₂		.022		.559	
LL ₂	.017	.035	0.43	0.89							

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Hatched areas on package denote metallized areas.
- 4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001