Microsemi
6 Lake Street, Lawrence, MA 01841
1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803
Website: http: //www.microsemi.com

PNP SILICON LOW POWER TRANSISTOR
 Qualified per MIL-PRF-19500/354

DEVICES

$$
\begin{array}{ll}
\text { 2N2604 } & \text { 2N2604UB } \\
\text { 2N2605 } & \text { 2N2605UB }
\end{array}
$$

LEVELS
JAN
JANTX JANTXV

TO-46 (TO-206AB)

UB Package

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted) (CONT.)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERTICS ${ }^{(2)}$					
Forward-Current Transfer Ratio $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$	2N2604, UB 2N2605, UB 2N2604, UB 2N2605, UB 2N2604, UB 2N2605, UB 2N2604, UB 2N2605, UB	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 40 \\ 100 \\ 60 \\ 150 \\ 40 \\ 100 \\ 15 \\ 30 \end{gathered}$	$\begin{aligned} & 120 \\ & 300 \\ & 180 \\ & 450 \\ & 160 \\ & 400 \end{aligned}$	
Collector-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=500 \mu \mathrm{Adc}$		$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$		0.3	Vdc
Base-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=500 \mu \mathrm{Adc}$		$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	0.7	0.9	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
$\begin{array}{ll} \hline \text { Small-Signal Short-Circuit Input Impedance } & \\ \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CB}}=5.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz} & 2 \mathrm{~N} 2604, \mathrm{UB} \\ & 2 \mathrm{~N} 2605, \mathrm{UB} \end{array}$	$\mathrm{h}_{\text {ie }}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\mathrm{k} \Omega$
Small-Signal Open-Circuit Forward Current Output Admittance $\begin{array}{ll}\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz} & 2 \mathrm{~N} 2604, \mathrm{UB} \\ & 2 \mathrm{~N} 2605, \mathrm{UB}\end{array}$	$\mathrm{h}_{\text {oe }}$		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\mu \mathrm{mhos}$
Small-Signal Short-Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}$	$\mathrm{hfe}_{\text {fe }}$	$\begin{gathered} 60 \\ 150 \end{gathered}$	$\begin{aligned} & 180 \\ & 450 \end{aligned}$	
Magnitude of Small-Signal Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{f}=30 \mathrm{MHz}$	$\left\|\mathrm{h}_{\mathrm{fe}}\right\|$	1.0	8.0	
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\text {obo }}$		6.0	pF
Noise Figure $\begin{aligned} \mathrm{V}_{\mathrm{CE}} & =5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{Adc}, \mathrm{R}_{\mathrm{g}}=10 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{~Hz} \\ \mathrm{~V}_{\mathrm{CE}} & =5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{Adc}, \mathrm{R}_{\mathrm{g}}=10 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{CE}} & =5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{Adc}, \mathrm{R}_{\mathrm{g}}=10 \mathrm{k} \Omega, \mathrm{f}=10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \mathrm{F}_{1} \\ & \mathrm{~F}_{2} \\ & \mathrm{~F}_{3} \end{aligned}$		$\begin{aligned} & 5.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	dB

(2) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

PACKAGE DIMENSIONS

Symbol	Dimensions				Note					
	Inches		Millimeters							
	Min	Max	Min	Max						
CD	.178	.195	4.52	4.95						
CH	.065	.085	1.65	2.16						
HD	.209	.230	5.31	5.84						
LC	.100 TP		2.54 TP		5					
LD	.016	.021	0.41	0.53	6					
LL	.500	1.750	12.70	44.45	6					
LU	.016	.019	0.41	0.48	6					
$\mathrm{~L}_{1}$.050		1.27	6					
$\mathrm{~L}_{2}$.250		6.35		6					
Q		.040		1.02	4					
TL	.028	.048	0.71	1.22	3,8					
TW	.036	.046	0.91	1.17	3,8					
r							.010		0.25	9
α	$45^{\circ} \mathrm{TP}$	$45^{\circ} \mathrm{TP}$	5							

NOTES:

1. Dimensions are in inches. Lead 1 is emitter, lead 2 is base, and lead 3 is collector.
2. Millimeters are given for general information only.
3. Symbol TL is measured from HD maximum.
4. Details of outline in this zone are optional.
5. Leads at gauge plane $.054+.001-.000$ inch $(1.37+0.03-0.00 \mathrm{~mm})$ below seating plane shall be within .007 inch $(0.18$ mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods or by the gauge and gauging procedure.
6. Symbol LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum.
7. Lead number three is electrically connected to case.
8. Beyond r maximum, TW shall be held for a minimum length of .011 inch $(0.28 \mathrm{~mm})$.
9. Symbol r applied to both inside corners of tab.
10. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

FIGURE 1. Physical dimensions - (TO-46).

Gort Road Business Park, Ennis, Co. Clare, Ireland
Tel: +353 (0) 656840044 Fax: +353 (0) 656822298

PACKAGE DIMENSIONS

Symbol	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
BH	.046	.056	1.17	1.42	
BL	.115	.128	2.92	3.25	
BW	.085	.108	2.16	2.74	
CL		.128		3.25	
CW		.108		2.74	
LL $_{1}$.022	.038	0.56	0.97	
LL $_{2}$.017	.035	0.43	0.89	

Symbol	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
LS_{1}	.035	.039	0.89	0.99	
LS_{2}	.071	.079	1.80	2.01	
LW	.016	.024	0.41	0.61	
r		.008		0.20	
r_{1}		.012		0.31	
r_{2}		.022		0.56	

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Hatched areas on package denote metallized areas
4. Pad $1=$ Base, Pad $2=$ Emitter, Pad $3=$ Collector, Pad $4=$ Shielding connected to the lid.
5. In accordance with ASME Y14.5M, diameters are equivalent to $\varphi \mathrm{X}$ symbology.

FIGURE 2. Physical dimensions, surface mount (UB version).

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001

