PNP SILICON LOW POWER TRANSISTOR
 Qualified per MIL-PRF-19500/323

DEVICES

LEVELS

JAN
JANTX JANTXV

ABSOLUTE MAXIMUM RATINGS ($T_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameters / Test Conditions	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	60	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	5.0	Vdc
Collector Current	I_{C}	200	mAdc
Total Power Dissipation	@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}^{(1)}$	P_{T}	0.36
O, $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}^{(1)}$	W		
Operating \& Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JC}}{ }^{(1)}$	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

1/ Consult 19500/323 for thermal curves
ELECTRICAL CHARACTERISTICS ($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERTICS	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	60		Vdc
Collector-Emitter Breakdown Voltage $\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}$				
Collector-Emitter Cutoff Voltage $\mathrm{V}_{\mathrm{BE}}=3.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{BE}}=3.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}$$\quad \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{CEX}}$		20	$\eta \mathrm{Adc}$
Collector-Base Cutoff Current $\mathrm{V}_{\mathrm{CB}}=60 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{CB}}=40 \mathrm{Vdc}$	$\mathrm{I}_{\mathrm{CBO}}$		10	$\mu \mathrm{Adc}$ $\eta \mathrm{Adc}$
Emitter-Base Cutoff Current $\mathrm{V}_{\mathrm{EB}}=5.0 \mathrm{Vdc}$	$\mathrm{I}_{\mathrm{EBO}}$		10	$\mu \mathrm{Adc}$
Collector-Emitter Cutoff Voltage $\mathrm{V}_{\mathrm{BE}}=3.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}$	$\mathrm{I}_{\mathrm{BEX}}$		50	$\eta \mathrm{Adc}$

UB Package

ELECTRICAL CHARACTERISTICS ($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted) (CONT.)

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
$\begin{aligned} & \text { Small-Signal Short-Circuit Forward Current Transfer Ratio } \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz} \\ & \\ & \end{aligned}$	h_{fe}	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=20 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{kHz} & \text { 2N3250A, AUB } \\ & \text { 2N3251A, AUB } \end{array}$	$\left\|\mathrm{h}_{\mathrm{fe}}\right\|$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\text {obo }}$		6.0	pF
Input Capacitance $\mathrm{V}_{\mathrm{EB}}=1.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\text {ibo }}$		8.0	pF

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time				
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc} ; \mathrm{I}_{\mathrm{B} 1}=1.0 \mathrm{mAdc}$	t_{on}		70	
Turn-Off Time				
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc} ; \mathrm{IC}=10 \mathrm{mAdc} ; \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=$	$2 \mathrm{~N} 3250 \mathrm{~A}, \mathrm{AUB}$	$\mathrm{t}_{\text {off }}$		250
1.0 mAdc	$2 \mathrm{~N} 3251 \mathrm{~A}, \mathrm{AUB}$			7 s

(2) Pulse Test: Pulse Width $=300 \mu$ s, Duty Cycle $\leq 2.0 \%$

PACKAGE DIMENSIONS

Symbol	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
CD	.178	.195	4.52	4.95	
CH	.170	.210	4.32	5.33	
HD	.209	.230	5.31	5.74	
LC	.100 TP	2.54 TP	6		
LD	.016	.021	0.41	0.53	7,8
LL	.500	.750	12.70	19.05	7,8
LU	.016	.019	0.41	0.48	7,8
L1		.050		1.27	7,8
L2	.250		6.35		7,8
P	.100		2.54		
Q		.040		1.02	5
TL	.028	.048	0.71	1.22	3,4
TW	.036	.046	0.91	1.17	3
r		.010		0.25	10
α	$45^{\circ} \mathrm{TP}$	$45^{\circ} \mathrm{TP}$	6		

NOTES:

1. Dimension are in inches.
2. Millimeters are given for general information only.
3. Beyond r (radius) maximum, TH shall be held for a minimum length of .011 inch $(0.28 \mathrm{~mm})$.
4. Dimension TL measured from maximum HD.
5. Body contour optional within zone defined by HD, CD, and Q .
6. Leads at gauge plane $.054+.001-.000$ inch $(1.37+0.03-0.00 \mathrm{~mm})$ below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods or by the gauge and gauging procedure shown in figure 2.
7. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
8. All three leads.
9. The collector shall be internally connected to the case.
10. Dimension r (radius) applies to both inside corners of tab.
11. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.
12. Lead $1=$ emitter, lead $2=$ base, lead $3=$ collector.

FIGURE 1. Physical dimensions (similar to TO-18).

Ltr.	Dimensions				Note	Ltr.	Dimensions				Note
	Inches		Millimeters				Inches		Millimeters		
	Min	Max	Min	Max			Min	Max	Min	Max	
BH	. 046	. 056	1.17	1.42		LS_{1}	. 035	. 039	0.89	0.99	
BL	. 115	. 128	2.92	3.25		LS_{2}	0.71	. 079	1.80	2.01	
BW	. 085	. 108	2.16	2.74		LW	. 016	. 024	0.41	0.61	
CL		. 128		3.25		r		. 008		0.20	
CW		. 108		2.74		r_{1}		. 012		0.31	
LL_{1}	. 022	. 038	0.56	0.96		r_{2}		. 022		0.56	
LL_{2}	. 017	. 035	0.43	0.89							

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Hatched areas on package denote metallized areas
4. Pad $1=$ Base, Pad $2=$ Emitter, Pad $3=$ Collector, Pad $4=$ Shielding connected to the lid.
5. In accordance with ASME Y14.5M, diameters are equivalent to $\varphi \mathrm{x}$ symbology.

FIGURE 2. Physical dimensions, surface mount (UB version).

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B

