2N3743 JANTX, JTXV 2N4930 JANTX, JTXV 2N4931 JANTX, JTXV

Processed per MIL-PRF-19500/397

PNP HIGH-VOLTAGE SILICON TRANSISTOR

MAXIMUM RATINGS

Ratings	Symbol	2N3743	2N4930	2N4931	Unit	
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	300	200	250	Vdc	
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	300	200	250	Vdc	
Emitter-Base Voltage	$V_{\text {Ebo }}$		5.0		Vdc	
Collector Current	I_{C}		200		mAdc	
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(1)}$ @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}^{(2)}$	P_{T}		$\begin{aligned} & 1.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{W} \\ & \mathrm{~W} \end{aligned}$	
Operating \& Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-65 to +200			${ }^{0} \mathrm{C}$	
THERMAL CHARACTERISTICS						TO-39 (TO-205AD)
Characteristics	Symbol		Max.		Unit	
Thermal Resistance Junction-to-Case	$\mathrm{R}_{\text {өJC }}$		35		${ }^{0} \mathrm{C} / \mathrm{W}$	

1) Derate linearly $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$
2) Derate linearly $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathbf{T}_{\mathrm{C}}=\mathbf{2 5}^{\boldsymbol{0}} \mathbf{C}$ unless otherwise noted)

Characteristics		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}$	$\begin{aligned} & \text { 2N3743 } \\ & \text { 2N4930 } \\ & \text { 2N4931 } \end{aligned}$	$\mathrm{V}_{\text {(BR)CEO }}$	$\begin{aligned} & 300 \\ & 200 \\ & 250 \end{aligned}$		Vdc
Collector-Emitter Breakdown Voltage $\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{Adc}$	$\begin{aligned} & \text { 2N3743 } \\ & \text { 2N4930 } \\ & \text { 2N4931 } \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {(BR)CbO }}$	$\begin{aligned} & 300 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$		Vdc
EmitterBase Breakdown Voltage $\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{Adc}$		$\mathrm{V}_{\text {(BR)EBO }}$		5.0	Vdc
Collector-Base Cutoff Current $\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=250 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{CB}}=150 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{CB}}=200 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & \text { 2N3743 } \\ & \text { 2N4930 } \\ & \text { 2N4931 } \end{aligned}$	$\mathrm{I}_{\text {CBO }}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	η Adc

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
Emitter-Base Cutoff Current $V_{\mathrm{EB}}=4.0 \mathrm{Vdc}$	$\mathrm{I}_{\mathrm{EBO}}$		150	$\eta \mathrm{Adc}$

ON CHARACTERISTICS

Forward-Current Transfer Ratio				
$\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$		30		
$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$	h_{FE}	40		
$\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$		40		
$\mathrm{I}_{\mathrm{C}}=30 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$		50	200	
$\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=20 \mathrm{Vdc}$		30		
Collector-Emitter Saturation Voltage				
$\mathrm{I}_{\mathrm{C}}=30 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=3.0 \mathrm{mAdc}$	$\mathrm{V}_{\mathrm{CE}(\text { sat })}$		1.2	Vdc
$\mathrm{I}_{\mathrm{C}}=10$ mAdc, $\mathrm{I}_{\mathrm{B}}=1.0$ mAdc			1.0	
Base-Emitter Saturation Voltage	$\mathrm{V}_{\mathrm{BE}(\text { sat })}$		1.0	Vdc
$\mathrm{I}_{\mathrm{C}}=10$ mAdc, $\mathrm{I}_{\mathrm{B}}=1.0$ mAdc			1.2	
$\mathrm{I}_{\mathrm{C}}=30$ mAdc, $\mathrm{I}_{\mathrm{B}}=3.0$ mAdc				

DYNAMIC CHARACTERISTICS

Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=20 \mathrm{Vdc}, \mathrm{f}=20 \mathrm{MHz}$				
Small-Signal Short-Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=10$ mAdc, $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}$	$\left\|\mathrm{h}_{\mathrm{fe}}\right\|$	2.0	8.0	
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f} \geq 0.1 \mathrm{MHz}$	h_{fe}	30	300	
Input Capacitance $\mathrm{V}_{\mathrm{EB}}=1.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{f} \geq 0.1 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{obo}}$		15	pF

SAFE OPERATING AREA

DC Tests	
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, 1$ Cycle, $\mathrm{t} \geq 1.0 \mathrm{~s}$	
Test $\mathbf{1}$	All Types
$\mathrm{V}_{\mathrm{CE}}=20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}$	
Test 2	All Types
$\mathrm{V}_{\mathrm{CE}}=100 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}$	
Test 3	2N3743
$\mathrm{V}_{\mathrm{CE}}=300 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=3.3 \mathrm{mAdc}$	2N4930
$\mathrm{V}_{\mathrm{CE}}=200 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{mAdc}$	2 N 4931
$\mathrm{~V}_{\mathrm{CE}}=250 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=4.0 \mathrm{mAdc}$	

(3) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
MMUN2217LT1G FP101-TL-E RN1607(TE85L,F) DRC9A14E0L DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146 DTC124TETL DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143TF3T5G NSBA143ZF3T5G NSBC114EF3T5G NSBC114YF3T5G NSBC123TF3T5G NSBC143TF3T5G NSVMUN2212T1G NSVMUN5111DW1T3G NSVMUN5314DW1T3G NSVUMC2NT1G SMMUN2134LT1G SMUN2212T1G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G 2SC3650-TD-E RN1303(TE85L,F) RN4605(TE85L,F) BCR135SH6327XT TTEPROTOTYPE79 UMC3NTR DTA113EET1G EMA2T2R EMH15T2R SDTA114YET1G SMMUN2111LT3G SMMUN2113LT1G SMMUN2114LT1G SMMUN2211LT3G SMUN2214T3G SMUN5113DW1T1G SMUN5335DW1T1G NSBA114YF3T5G NSBC114TF3T5G

