SINGLE POWER SUPPLY SYNCHRONOUS PWM CONTROLLER

The NX2155H controller IC is a single input supply synchronous Buck controller IC designed for step down DC to DC converter applications. NX2155H is optimized to convert bus voltages from 8 V to 22 V to output as low as 0.8 V voltage. An internal regulator converts bus voltage to 5 V , which provides voltage supply to internal logic and driver circuit. The NX2155H can operates at programmable frequency of 2 MHz and employs loss-less current limiting by sensing the Rdson of synchronous MOSFET followed by hiccup feature.Feedback under voltage triggers Hiccup.
Other features of the device are: Internal schottky diode, thermal shutdown, 5 V gate drive, adaptive deadband control, internal digital soft start, 5VREG undervoltage lock out and Shutdown capability via the comp pin.

Single supply voltage from 8 V to 22 V
Internal 5V regulator

- Programmable operational frequency of 2 MHz
- Internal Digital Soft Start Function
- Less than 50 nS adaptive deadband
- Current limit triggers hiccup by sensing Rdson of Synchronous MOSFET
- Pb-free and RoHS compliant

APPLICATIONS
LCDTV

- Graphic Card on board converters
- Memory Vddq Supply in mother board applications
- On board DC to DC such as

12 V to $3.3 \mathrm{~V}, 2.5 \mathrm{~V}$ or 1.8 V

- Hard Disk Drive
- Set Top Box

Figure1 - Typical application of 2155H

ORDERING INFORMATION

Device	Temperature	Package	Package Marking	Pb-Free
NX2155HCUPTR	0 to $70^{\circ} \mathrm{C}$	MSOP-EP-10L	NX155HXXX	Yes

Note: XXX is date code. For example, 841 means that this NX 2155 H is packaged in the 41th week of 2008

ABSOLUTE MAXIMUM RATINGS(NOTE1)

VCC to GND \& BST to SW voltage 6.5V
BST to GND Voltage 30V
VIN to GND Voltage ... 25V
SW to GND ... -2V to 35V
All other pins .. -0.3V to 6.5V
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
NOTE1: Stresses above those listed in "ABSOLUTE MAXIMUM RATINGS", may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

PACKAGE INFORMATION

ELECTRICAL SPECIFICATIONS

Unless otherwise specified, these specifications apply over Vin $=12 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$. Followings are bypass capacitors: $C_{\text {VIN }}=1 u F, C_{\text {5VREG }}=4.7 \mathrm{uF}$, all X5R ceramic capacitors. Typical values refer to $T_{A}=25^{\circ} \mathrm{C}$. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the ambient temperature.

PARAMETER	SYM	Test Condition	Min	TYP	MAX	Units
Reference Voltage Ref Voltage	$V_{\text {REF }}$		0.784	0.8	0.816	V
Ref Voltage line regulation		$\mathrm{V}_{\text {in }}=8 \mathrm{~V}$ to 22 V		0.4		\%
5VREG						
5VREG Voltage range			4.75	5	5.25	V
5VREG UVLO		5V REG rising		3.9	4.4	V
5VREG UVLO Hysteresis				0.2		V
5VREG Line Regulation		$\mathrm{V}_{\mathbb{I N}}=9 \mathrm{~V}$ to 22 V		10	20	mV
5VREG Max Current			20	50		mA
Supply Voltage(Vin) $V_{\text {in }}$ Voltage Range	$V_{\text {in }}$		8		22	V
Input Voltage Current(Static)		No switching	3.7	4.8	6.5	mA
Input Voltage Current (Dynamic)		Switching with HDRV and LDRV open @2.2MHz	5.4	8	11	mA

PARAMETER	SYM	Test Condition	Min	TYP	MAX	Units
Vin UVLO $\mathrm{V}_{\text {in }}$-Threshold	$\mathrm{V}_{\mathrm{in}-}$ UVLO	$\mathrm{V}_{\text {in }}$ Rising	6	6.5	7.5	V
$\mathrm{V}_{\text {in }}$-Hysteresis	$\mathrm{V}_{\text {in_ }}$ Hyst	$V_{\text {in }}$ Falling		0.6		V
SS Soft Start time	Tss	$\mathrm{F}_{\mathrm{S}}=2.2 \mathrm{MHz}$		400		uS
Oscillator (Rt) Frequency	$\mathrm{F}_{\text {S }}$	$\mathrm{Rt}=4.22 \mathrm{k}$		2250		kHz
Ramp-Amplitude Voltage	$\mathrm{V}_{\text {RAMP }}$		1.4	1.5	1.9	V
Max Duty Cycle		$\mathrm{F}_{\mathrm{S}}=2.2 \mathrm{MHz}$	62	71	80	\%
Min Controlable On Time					150	nS
Error Amplifiers Transconductance			1500	2000	2500	umho
Input Bias Current	lb			10		nA
Comp SD Threshold			0.24	0.3	0.36	V
FBUVLO Feedback UVLO threshold			0.54	0.6	0.66	V
High Side Driver($\mathrm{C}_{\mathrm{L}}=2200 \mathrm{pF}$) Output Impedance, Sourcing	$\mathrm{R}_{\text {source }}$ (Hdrv)	$1=200 \mathrm{~mA}$		1.9		ohm
Output Impedance, Sinking	$\mathrm{R}_{\text {sink }}$ (Hdrv)	$1=200 \mathrm{~mA}$		1.7		ohm
Rise Time	THdrv(Rise)			14		ns
Fall Time	THdrv(Fall)			17		ns
Deadband Time	Tdead(L to H)	Ldrv going Low to Hdrv going High, 10\%-10\%	21	30	39	ns
Low Side Driver ($\mathrm{C}_{\mathrm{L}}=2200 \mathrm{pF}$) Output Impedance, Sourcing Current	$\mathrm{R}_{\text {source }}$ (Ldrv)	$\mathrm{I}=200 \mathrm{~mA}$		1.9		ohm
Output Impedance, Sinking	$\mathrm{R}_{\text {sink }}(\mathrm{Ldrv}$)	$1=200 \mathrm{~mA}$		1		ohm
Rise Time	TLdrv(Rise)			13		ns
Fall Time	TLdrv(Fall)			12		ns
Deadband Time	Tdead(H to L)	SW going Low to Ldrv going High, 10% to 10%	7	10	13	ns
OCP OCP current			30	37	45	uA
Over temperature Threshold				150		${ }^{\circ} \mathrm{C}$
Hysteresis				20		${ }^{\circ} \mathrm{C}$
Internal Schottky Diode Forward voltage drop		forward current=20mA		350	500	mV

PIN DESCRIPTIONS

PIN \#	PIN SYMBOL	PIN DESCRIPTION
5	5 VREG	An internal 5V regulator provides supply voltage for the low side fet driver, BST and internal logic circuit. A high frequency 4.7uF X5R ceramic capacitor must be connected from this pin to the GND pin as close as possible.
6	VIN	Voltage supply for the internal 5V regulator. A high freuqncy 0.1uF ceramic ca- pacitor must be connected from this pin to GND.
9	FB	This pin is the error amplifier inverting input. This pin is also connected to the output UVLO comparator. When this pin falls below threshold, both HDRV and LDRV outputs are in hiccup.
8	COMP	This pin is the output of the error amplifier and together with FB pin is used to compensate the voltage control feedback loop. This pin is also used as a shut down pin. When this pin is pulled below 0.3V, both drivers are turned off and internal soft start is reset.
3	BST	This pin supplies voltage to the high side driver. A high frequency ceramic capacitor of 0.1 to 1 uF must be connected from this pin to SW pin.
10	OCP	This pin is connected to the drain of the external low side MOSFET and is the input of the over current protection(OCP) comparator. An internal current source is flown to the external resistor which sets the OCP voltage across the Rdson of the low side MOSFET. Current limit point is this voltage divided by the Rds- on.
1	SW	This pin is connected to the source of the high side MOSFET and provides return path for the high side driver.
2	HDRV	High side MOSFET gate driver.
7	RT	Ground pin.
4	LDRV	Low side MOSFET gate driver.
7	Oscillator's frequency can be set by using an external resistor from this pin to GND.	
PAD	GND	

BLOCK DIAGRAM

Figure 2 - Simplified block diagram of the NX2155H

Demoboard Design(VIN=12V, VOUT=5V/2A, FREUQNCY=2.2MHz)

* R7 and C7 are optional.

Figure 3 - Simplified demoboard schematic of NX2155H

Bill of Materials

Item	Quantity	Reference	Part	Manufacturer
1	3	C1,C3,CIN1	0.1 u	
2	1	C2	$4.7 \mathrm{uF}, 6.3 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}$	
3	1	C 4	180 p	
4	1	C5	1 n	
5	1	C6	10 p	
6	1	C 7	470 p	
7	1	CIN2	$10 \mathrm{uF}, 16 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}$	
8	2	COUT1,COUT2	$10 \mathrm{uF}, 10 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}$	
9	1	L1	BRL3225T1R0M	TAIYO YUDEN
10	1	M1	AO6800	AOS
11	1	R1	4.22 k	
12	1	R2	6 k	
13	1	R3	300	
14	1	R4	49.9 k	
15	1	R5	9.53 k	
16	1	R6	15 k	
17	1	R7	0	
18	1	R8	NX2155H/MSOP-EP10	NEXSEM INC.
19	1	U1		

Demoboard Waveforms

Fig. 4 Output ripple(CH1 VOUT AC 50mV/DIV, CH2 SW 10V/DIV, CH4 OUTPUT CURRENT 2A/DIV)

Fig. 6 OCP protection during output short(CH1 VOUT 2V/DIV, CH4 OUTPUT CURRENT 5A/DIV)

Fig. 5 Startup(CH1 VOUT 2V/DIV)

Fig. 7 Output dynamic response(CH1 VOUT AC 200mV/DIV, CH4 OUTPUT CURRENT 500mA/DIV)

Fig. 8 Output efficiency

Demoboard Layout

Figure 9 Top layer

Figure 10 Ground layer

Figure 11 Power layer

Figure 12 Bottom layer

Microsemi
 Demoboard Design((VIN=12V, VOUT=5V/10A, FREUQNCY=400kHz)

Figure 13-Simplified demoboard schematic of NX2155H

Bill of Materials

Item	Quantity	Reference	Part	Manufacturer
1	2	C3,C4	0.1 u	
2	1	C5	4.7 u	
3	2	C9,C10	$22 \mathrm{u} / 25 \mathrm{~V} / \mathrm{X} 5 \mathrm{R}$	
4	1	C 13	1000 p	
5	3	$\mathrm{C} 14, \mathrm{C} 15, \mathrm{C} 19$	$47 \mathrm{uF} / 6.3 \mathrm{~V} / \mathrm{X} 5 \mathrm{R}$	
6	1	C 18	$100 \mathrm{u} / 16 \mathrm{v}$	
7	1	C 21	1 n	
8	1	C22	33 p	
9	1	C23	220 p	
10	1	L1	DO5010H-222MLD	COILCRAFT
11	1	M1	BSC119N03S	INFINEON
12	1	M2	$3 \mathrm{k} 029 \mathrm{NO25S}$	INFINEON
13	1	R1	30 k	
14	2	R3,R7	750	
15	1	R8	100 k	
16	1	R9	19.1 k	
17	1	R10	2.15	
18	1	R17	NX2155/MSOP-EP10	NEXSEM INC.
19	1	U 1		

NX2155H

Demoboard Waveforms

Fig. 14 Output ripple(CH1 SW 10V/DIV, CH2 VOUT AC $50 \mathrm{mV} / \mathrm{DIV}, \mathrm{CH} 4$ INDUCTOR CURRENT 5A/DIV)

Fig. 16 OCP protection during output short(CH2 VOUT 2V/DIV, CH4 OUTPUT CURRENT 5A/DIV)

Fig. 18 Output efficiency

Fig. 15 Startup(CH1 VOUT 2V/DIV, CH4 INDUCTOR CURRENT 5A/DIV)

Fig. 17 Output dynamic response(CH2 VOUTAC 200mV/DIV, CH4 OUTPUT CURRENT 5A/DIV)

APPLICATION INFORMATION

Symbol Used In Application Information:

Vin - Input voltage
Vout - Output voltage
lout - Output current
$\Delta V_{\text {RIPPLE }}$ - Output voltage ripple
Fs - Working frequency
Δ IRIPPLE - Inductor current ripple

Output Inductor Selection

The selection of inductor value is based on inductor ripple current, power rating, working frequency and efficiency. Larger inductor value normally means smaller ripple current. However if the inductance is chosen too large, it brings slow response and lower efficiency. Usually the ripple current ranges from 20% to 40% of the output current. This is a design freedom which can be decided by design engineer according to various application requirements. The inductor value can be calculated by using the following equations:

$$
\begin{align*}
& \mathrm{L}_{\text {OUT }}=\frac{V_{\text {IN }}-V_{\text {OUT }}}{\Delta I_{\text {RIPPLE }}} \times \frac{V_{\text {OUT }}}{V_{\text {IN }}} \times \frac{1}{F_{\text {S }}} \tag{1}\\
& I_{\text {RIPPLE }}=k \times I_{\text {OUTPUT }}
\end{align*}
$$

where k is between 0.2 to 0.4 .

Output Capacitor Selection

Output capacitor is basically decided by the amount of the output voltage ripple allowed during steady state(DC) load condition as well as specification for the load transient. The optimum design may require a couple of iterations to satisfy both condition.

The amount of voltage ripple during the DC load condition is determined by equation(2).

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {RIPPLE }}=\mathrm{ESR} \times \Delta \mathrm{I}_{\text {RIPPLE }}+\frac{\Delta \mathrm{I}_{\text {RIPPLE }}}{8 \times \mathrm{F}_{\mathrm{S}} \times \mathrm{C}_{\text {OUT }}} \tag{2}
\end{equation*}
$$

Where ESR is the output capacitors' equivalent series resistance, $\mathrm{C}_{\text {OUT }}$ is the value of output capacitors.

Typically when ceramic capacitors are selected as output capacitors, DC ripple spec is easy to be met, but mutiple ceramic capacitors are required at the output to meet transient requirement.

Compensator Design

Due to the double pole generated by LC filter of the power stage, the power system has 180° phase shift, and therefore, is unstable by itself. In order to achieve accurate output voltage and fast transient response, compensator is employed to provide highest possible bandwidth and enough phase margin.Ideally,the Bode plot of the closed loop system has crossover frequency between $1 / 10$ and $1 / 5$ of the switching frequency, phase margin greater than 50° and the gain crossing 0 dB with $20 \mathrm{~dB} /$ decade. Power stage output capacitors usually decide the compensator type. If electrolytic capacitors are chosen as output capacitors, type II compensator can be used to compensate the system, because the zero caused by output capacitor ESR is lower than crossover frequency. Otherwise type III compensator should be chosen.

A. Type III compensator design

For low ESR output capacitors, typically such as Sanyo oscap and poscap, the frequency of ESR zero caused by output capacitors is higher than the crossover frequency. In this case, it is necessary to compensate the system with type III compensator. The following figures and equations show how to realize the type III compensator by transconductance amplifier.

$$
\begin{align*}
& \mathrm{F}_{\mathrm{Z} 1}=\frac{1}{2 \times \pi \times \mathrm{R}_{4} \times \mathrm{C}_{2}} \tag{3}\\
& \mathrm{~F}_{\mathrm{Z} 2}=\frac{1}{2 \times \pi \times\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right) \times \mathrm{C}_{3}} \tag{4}\\
& \mathrm{~F}_{\mathrm{P} 1}=\frac{1}{2 \times \pi \times \mathrm{R}_{3} \times \mathrm{C}_{3}} \tag{5}\\
& \mathrm{~F}_{\mathrm{P} 2}=\frac{1}{2 \times \pi \times \mathrm{R}_{4} \times \frac{\mathrm{C}_{1} \times \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}} \tag{6}
\end{align*}
$$

where $\mathrm{F}_{21}, \mathrm{~F}_{22}, \mathrm{~F}_{\mathrm{P} 1}$ and $\mathrm{F}_{\mathrm{P} 2}$ are poles and zeros in the compensator. Their locations are shown in figure 20.

The transfer function of type III compensator for transconductance amplifier is given by:

$$
\frac{V_{e}}{V_{\text {oUT }}}=\frac{1-g_{m} \times Z_{f}}{1+g_{m} \times Z_{\text {in }}+Z_{\text {in }} / R_{1}}
$$

For the voltage amplifier, the transfer function of compensator is

$$
\frac{V_{e}}{V_{\text {OUT }}}=\frac{-Z_{f}}{Z_{\text {in }}}
$$

To achieve the same effect as voltage amplifier, the compensator of transconductance amplifier must satisfythis condition: $R_{4} \gg 2 / \mathrm{gm}$. And it would be desirable if $R_{1}\left\|R_{2}\right\| R_{3} \gg 1 / \mathrm{gm}$ can be met at the same time.

Figure 19-Type III compensator using transconductance amplifier

Figure 20 - Bode plot of Type III compensator

B. Type II compensator design

Type II compensator can be realized by simple RC circuit without feedback as shown in figure 22. R_{3} and C_{1} introduce a zero to cancel the double pole effect. C_{2} introduces a pole to suppress the switching noise. The following equations show the compensator pole zero location and constant gain.

$$
\begin{align*}
& \text { Gain }=g_{m} \times \frac{R_{1}}{R_{1}+R_{2}} \times R_{3} \tag{7}\\
& F_{z}=\frac{1}{2 \times \pi \times R_{3} \times C_{1}} \tag{8}\\
& F_{p} \approx \frac{1}{2 \times \pi \times R_{3} \times C_{2}} \tag{9}
\end{align*}
$$

For this type of compensator, F_{o} has to satisfy $\mathrm{F}_{\mathrm{LC}}<\mathrm{F}_{\mathrm{ESR}} \ll \mathrm{F}_{\mathrm{o}}<=1 / 10 \sim 1 / 5 \mathrm{~F}_{\mathrm{s}}$.

Figure 21 - Bode plot of Type II compensator

Over Current Protection

Figure 22 - Type II compensator with transconductance amplifier

Output Voltage Calculation

Output voltage is set by reference voltage and external voltage divider. The reference voltage is fixed at 0.8 V . The divider consists of two ratioed resistors so that the output voltage applied at the Fb pin is 0.8 V when the output voltage is at the desired value. The following equation and picture show the relationship between $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\text {REF }}$ and voltage divider.

$$
R_{1}=\frac{R_{2} \times V_{\text {REF }}}{V_{\text {OUT }}-V_{\text {REF }}}
$$

where R_{2} is part of the compensator, and the value of R_{1} value can be set by voltage divider.

See compensator design for R_{1} and R_{2} selection.

Voltage divider
Figure 23 - Voltage divider

Over current protection is achieved by sensing current through the low side MOSFET. A typical internal current source of 37uA flowing through an external resistor connected from OCP pin to SW node sets the over current protection threshold. When synchronous FET is on, the voltage at node SW is given as
$V_{\text {sw }}=-I_{L} \times R_{\text {DSoN }}$
The voltage at pin OCP is given as
$\mathrm{I}_{\text {ocp }} \times \mathrm{R}_{\text {ocP }}+\mathrm{V}_{\text {SW }}$
When the voltage is below zero, the over current occurs.

Figure 24 - Over current protection
The over current limit can be set by the following equation

$$
I_{\text {SET }}=\frac{I_{\text {OCP }} \times R_{\text {OCP }}}{K \times R_{\text {DSON }}}
$$

Frequency Selection

The frequency can be set by external Rt resistor. The relationship between frequency and $R T$ pin is shown as follows.

Figure 25 - Frequency versus Rt resistor

NOTE: ALL DIMENSIONS ARE DISPLAYED IN INCHES.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Microsemi manufacturer:

Other Similar products are found below :
AZ7500EP-E1 NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81101BMNTXG
NCP81205MNTXG SJE6600 SMBV1061LT1G SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG
NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C MAX8778ETJ+ NTBV30N20T4G NCP1240AD065R2G
NCP1240FD065R2G NCP1361BABAYSNT1G NTC6600NF NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M
NCP81101MNTXG TEA19362T/1J IFX81481ELV NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG
NCP1251FSN65T1G NCP1246BLD065R2G NTE7154 NTE7242 LTC7852IUFD-1\#PBF LTC7852EUFD-1\#PBF MB39A136PFT-G-BNDERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G MCP1633T-E/MG NCV1397ADR2G NCP1246ALD065R2G AZ494AP-E1

