A MICROSEMI COMPANY

The Infinite Power of InNovation

Production

Data Sheet

DESCRIPTION

The UC184xA family of control ICs provides externally programmable oscillator to set all the necessary features to implement off-line frequency and maximum duty cycle. The fixed-frequency, current-mode switching power undervoltage lock-out is designed to operate with supplies with a minimum of external $250 \mu \mathrm{~A}$ typ. start-up current, allowing an efficient components. The current mode architecture bootstrap supply voltage design. Available demonstrates improved load regulation, pulse- options for this family of products, such as start-by-pulse current limiting and inherent protection up voltage hysteresis and duty cycle, are of the power supply output switch. The IC summarized below in the Available Options includes: A bandgap reference trimmed to $\pm 1 \%$ section. The UC184xA family of control ICs is accuracy, an error amplifier, a current sense also available in 14-pin SOIC package which comparator with internal clamp to 1 V , a high makes the Power Output Stage Collector and current totem pole output stage for fast Ground pins available. switching of power MOSFET's, and an

IMPORTANT: For the most current data, consult MICROSEMF's website: http://www.microsemi.com

PRODUCT HIGHLIGHT

Comparison of UC384xA vs. SG384x DischargeCurrent

KEY FEATURES

- LOW START-UP CURRENT. (0.5mA max.)
- TRIMMED OSCILLATOR DISCHARGE CURRENT. (See Product Highlight)
- OPTIMIZED FOR OFF-LINE AND DC-TO-DC CONVERTERS.
- AUTOMATIC FEED FORWARD COMPENSATION.
- PULSE-BY-PULSE CURRENT LIMITING.
- ENHANCED LOAD RESPONSE CHARACTERISTICS.
- UNDER-VOLTAGE LOCKOUT WITH HYSTERESIS.
- DOUBLE PULSE SUPPRESSION.
- HIGH-CURRENT TOTEM POLE OUTPUT.
- INTERNALLY TRIMMED BANDGAP REFERENCE. - 500 KHz OPERATION.
- LOW RO ERROR AMPLIFIER.

Available Options

Part\#	Start-Up Voltage	Hysteresis	Max. Duty Cycle
UCx842A	16 V	6 V	$<100 \%$
UCx843A	8.4 V	0.8 V	$<100 \%$
UCx844A	16 V	6 V	$<50 \%$
UCx845A	8.4 A	0.8 V	$<50 \%$

[^0]
Current Mode PWM Controller

Production Data Shet

THERMAL DATA

M PACKAGE:

THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{J A}$	$95^{\circ} \mathrm{C} / \mathrm{W}$
DM PACKAGE:	
THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{\text {JA }}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
D PACKAGE:	$120^{\circ} \mathrm{C} / \mathrm{W}$
THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{\text {IA }}$	
Y PACKAGE:	$130^{\circ} \mathrm{C} / \mathrm{W}$
THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{J A}$	

Junction Temperature Calculation: $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times \theta_{\mathrm{JA}}\right)$.
The $\theta_{\text {IA }}$ numbers are guidelines for the thermal performance of the device/pc-board system All of the above assume no ambient airflow

Current Mode PWM Controller

Production Data Sheet

ELECTRICAL CHARACTERISTICS									
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for UC384xA with $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, UC284xA with $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$, UC184xA with $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} ; \mathrm{R}_{\mathrm{T}}=10 \mathrm{~K} ; \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}$. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)									
Parameter	Symbol	Test Conditions	UC184xA/284xA			UC384xA			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Reference Section									
Output Voltage	$\mathrm{V}_{\text {REF }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{L}_{\mathrm{L}}=1 \mathrm{~mA}$	4.95	5.00	5.05	4.90	5.00	5.10	V
Line Regulation		$12 \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$		6	20		6	20	mV
Load Regulation		$1 \leq \mathrm{I}_{0} \leq 20 \mathrm{~mA}$		6	25		6	25	mV
Temperature Stability (Note 2 \& 7)				0.2	0.4		0.2	0.4	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Total Output Variation		Over Line, Load, and Temperature	4.9		5.1	4.82		5.18	V
Output Noise Voltage (Note 2)	V_{N}	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}, \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		50			50		$\mu \mathrm{V}$
Long Term Stability (Note 2)		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, \mathrm{t}=1000 \mathrm{hrs}$		5	25		5	25	mV
Output Short Circuit Current	I_{sc}		-30	-100	-180	-30	-100	-180	mA
Oscillator Section									
Initial Accuracy (Note 6)		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	47	52	57	47	52	57	kHz
Voltage Stability		$12 \leq \mathrm{V}_{\text {cc }} \leq 25 \mathrm{~V}$		0.2	1		0.2	1	\%
Temperature Stability (Note 2)		$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$		5			5		\%
Amplitude (Note 2)				1.7			1.7		V
Discharge Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {PIN } 4}=2 \mathrm{~V}$	7.8	8.3	8.8	7.8	8.3	8.8	mA
		$\mathrm{V}_{\text {PIN } 4}=2 \mathrm{~V}, \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	7.5		8.8	7.6		8.8	mA
Error Amp Section									
Input Voltage		$\mathrm{V}_{\text {PN } 1}=2.5 \mathrm{~V}$	2.45	2.50	2.55	2.42	2.50	2.58	V
Input Bias Current	I_{8}			-0.3	-1		-0.3	-2	$\mu \mathrm{A}$
Open Loop Gain	$\mathrm{A}_{\mathrm{voL}}$	$2 \leq \mathrm{V}_{0} \leq 4 \mathrm{~V}$	65	90		65	90		dB
Unity Gain Bandwidth (Note 2)	UGBW	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.7	1		0.7	1		MHz
Power Supply Rejection Ratio (Note 3)	PSRR	$12 \leq \mathrm{V}_{\text {cc }} \leq 25 \mathrm{~V}$	60	70		60	70		dB
Output Sink Current	I_{OL}	$\mathrm{V}_{\mathrm{PN} 2}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{PN} 1}=1.1 \mathrm{~V}$	2	6		2	6		mA
Output Source Current	I_{OH}	$\mathrm{V}_{\text {PIN } 2}=2.3 \mathrm{~V}, \mathrm{~V}_{\text {PN } 1}=5 \mathrm{~V}$	-0.5	-0.8		-0.5	-0.8		mA
Output Voltage High Level	V_{OH}	$\mathrm{V}_{\text {PIN } 2}=2.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{~K}$ to ground	5	6		5	6		V
Output Voltage Low Level	V_{ol}	$\mathrm{V}_{\text {PIN } 2}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{REF}}$		0.7	1.1		0.7	1.1	V
Current Sense Section									
Gain (Note 3 \& 4)	$\mathrm{A}_{\text {vol }}$		2.85	3	3.15	2.85	3	3.15	V / N
Maximum Input Signal (Note 3)		$\mathrm{V}_{\text {PI } 1}=5 \mathrm{~V}$	0.9	1	1.1	0.9	1	1.1	V
Power Supply Rejection Ratio (Note 3)	PSRR	$12 \leq \mathrm{V}_{\text {cc }} \leq 25 \mathrm{~V}$		70			70		dB
Input Bias Current	I_{B}			-2	-10		-2	-10	$\mu \mathrm{A}$
Delay to Output (Note 2)	T_{pd}	$\mathrm{V}_{\text {PIN } 3}=0$ to 2 V		150	300		150	300	ns
Output Section									
Output Low Level	$\mathrm{V}_{\text {o }}$	$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$		0.1	0.4		0.1	0.4	V
		$\mathrm{I}_{\text {SINK }}=200 \mathrm{~mA}$		1.5	2.2		1.5	2.2	V
Output High Level	$V_{\text {OH }}$	$\mathrm{I}_{\text {SOUREE }}=20 \mathrm{~mA}$	13	13.5		13	13.5		V
		$\mathrm{I}_{\text {SOURCE }}=200 \mathrm{~mA}$	12	13.5		12	13.5		V
Rise Time (Note 2)	T_{R}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$		50	150		50	150	ns
Fall Time (Note 2)	T_{F}	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$		50	150		50	150	ns
UVLO Saturation	$\mathrm{V}_{\text {SAT }}$	$\mathrm{V}_{\text {cC }}=5 \mathrm{~V}, \mathrm{I}_{\text {SIIK }}=10 \mathrm{~mA}$		0.7	1.2		0.7	1.2	V

(Electrical Characteristics continue next page.)

Current Mode PWM Controller

Production Data Sheet

ELECTRICAL CHARACTERISTICS (Con't.)									
Parameter	Symbol	Test Conditions	UC184xA/284xA			UC384×A			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Under-Voltage Lockout Section									
Start Threshold		x842A/4A	15	16	17	14.5	16	17.5	V
		x843A/5A	7.8	8.4	9.0	7.8	8.4	9.0	V
Min. Operation Voltage After Turn-On		x842A/4A	9	10	11	8.5	10	11.5	V
		x843A/5A	7.0	7.6	8.2	7.0	7.6	8.2	V
PWM Section									
Maximum Duty Cycle		x842A/3A	94	96	100	94	96	100	\%
		x844A/5A	47	48	50	47	48	50	\%
Minimum Duty Cycle					0			0	\%
Total Standby Section									
Start-Up Current				0.3	0.5		0.3	0.5	mA
Operating Supply Current	$\mathrm{I}_{\text {cc }}$			11	17		11	17	mA
Zener Voltage	V_{z}	$\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$	30	35		30	35		V

Notes: 2. These parameters, although guaranteed, are not 100% tested in production.
3. Parameter measured at trip point of latch with $\mathrm{V}_{\mathrm{VFB}}=0$.
4. Gain defined as: $\mathrm{A}_{\mathrm{VOL}}=\frac{\Delta \mathrm{V}_{\mathrm{COMP}}}{\Delta \mathrm{V}_{\text {ISENSE }}} ; 0 \leq \mathrm{V}_{\text {ISENSE }} \leq 0.8 \mathrm{~V}$.
5. Adjust V_{CC} above the start threshold before setting at 15 V .
6. Output frequency equals oscillator frequency for the UC1842A and UC1843A. Output frequency is one half oscillator frequency for the UC1844A and UC1845A.
7. "Temperature stability, sometimes referred to as average temperature coefficient, is described by the equation:

$$
\text { Temp Stability }=\frac{\mathrm{V}_{\mathrm{REF}}(\max .)-\mathrm{V}_{\mathrm{REF}}(\min .)}{\mathrm{T}_{\mathrm{J}}(\max .)-\mathrm{T}_{\mathrm{J}}(\min .)}
$$

$\mathrm{V}_{\mathrm{REF}}$ (max.) \& $\mathrm{V}_{\mathrm{REF}}$ (min.) are the maximum \& minimum reference voltage measured over the appropriate temperature range. Note that the extremes in voltage do not necessarily occur at the extremes in temperature."

*- $V_{c c}$ and V_{c} are internally connected for 8 pin packages.
** - POWER GROUND and GROUND are internally connected for 8 pin packases.
*** - Toggle flip flop used only in $x 844 \mathrm{~A}$ and $\times 845 \mathrm{~A}$ series.

Current Mode PWM Controller
Production Data Sheet

CHARACTERISTIC CURVES

FIGURE 1. - OSCILLATOR FREQUENCY vs. TIMING RESISTOR

For $R_{T}>5 k, f \frac{1.72}{R_{T} C_{T}}$

Note: Output drive frequency is half the oscillator frequency for the UCx844A/5A devices.

FIGURE 2. - MAXIMUM DUTY CYCLE vs. TIMING RESISTOR

TYPICAL APPLICATION CIRCUITS

FIGURE 3. - CURRENT SENSE SPIKE SUPPRESSION

The RC low pass filter will eliminate the leading edge current spike caused by parasitics of Power MOSFET.

FIGURE 4. - MOSFET PARASITIC OSCILLATIONS

A resistor $\left(R_{1}\right)$ in series with the MOSFET gate will reduce overshoot \& ringing caused by the MOSFET input capacitance and any inductance in series with the gate drive. (Note: It is very important to have a low inductance ground path to insure correct operation of the I.C. This can be done by making the ground paths as short and as wide as possible.)

FIGURE 5. - EXTERNAL DUTY CYCLE CLAMP AND MULTI-UNIT SYNCHRONIZATION

Current Mode PWM Controller
PRODUCTION DATA SHEET

TYPICAL APPLICATION CIRCUITS (continued)

FIGURE 6. - SLOPE COMPENSATION

Due to inherent instability of current mode converters running above 50% duty cycle, slope compensation should be added to either the current sense pin or the error amplifier. Figure 6 shows a typical slope compensation technique.

FIGURE 7. - OPEN LOOP LABORATORY FIXTURE

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected to pin 5 in a single point ground. The transistor and 5 k potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3 .

TYPICAL APPLICATION CIRCUITS (continued)

FIGURE 8. - OFF-LINE FLYBACK REGULATOR

SPECIFICATIONS

Input line voltage: Input frequency:
Switching frequency:
Output power:
Output voltage:
Output current:
Line regulation:
Load regulation:
Efficiency @ 25 Watts,
$\mathrm{V}_{\mathbb{N}}=90 \mathrm{VAC}:$
$\mathrm{V}_{\mathrm{IN}}=130 \mathrm{VAC}:$
Output short-circuit current:

90VAC to 130VAC
50 or 60 Hz
$40 \mathrm{KHz} \pm 10 \%$
25W maximum
$5 \mathrm{~V}+5 \%$
2 to 5A
0.01\% N

8\%/A*
70\%
65\%
2.5Amp average

* This circuit uses a low-cost feedback scheme in which the DC voltage developed from the primary-side control winding is sensed by the UC3844A error amplifier. Load regulation is therefore dependent on the coupling between secondary and control windings, and on transformer leakage inductance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Microsemi manufacturer:

Other Similar products are found below :
AZ7500EP-E1 NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81101BMNTXG
NCP81205MNTXG SJE6600 SMBV1061LT1G SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG
NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C MAX8778ETJ+ NTBV30N20T4G NCP1240AD065R2G
NCP1240FD065R2G NCP1361BABAYSNT1G NTC6600NF NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M
NCP81101MNTXG TEA19362T/1J IFX81481ELV NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG
NCP1251FSN65T1G NCP1246BLD065R2G NTE7154 NTE7242 LTC7852IUFD-1\#PBF LTC7852EUFD-1\#PBF MB39A136PFT-G-BNDERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G MCP1633T-E/MG NCV1397ADR2G NCP1246ALD065R2G AZ494AP-E1

[^0]: Note: Available in Tape \& Reel. Append the letters "TR" to the part number. (i.e. UC3842ADM-TR)

