

Low Skew, Low Additive Jitter 10 output LVPECL/LVDS/HCSL Fanout Buffer with one LVCMOS output

Features

- 3 to 1 input Multiplexer: Two inputs accept any differential (LVPECL, HCSL, LVDS, SSTL, CML, LVCMOS) or a single ended signal and the third input accepts a crystal or a single ended signal
- Ten differential LVPECL/LVDS/HCSL outputs
- One LVCMOS output
- Ultra-low additive jitter: 24fs (integration band: 12kHz to 20MHz at 625MHz clock frequency)
- Supports clock frequencies from 0 to 1.6GHz
- Supports 2.5V or 3.3V power supplies on LVPECL/LVDS/HCSL outputs
- Supports 1.5V, 1.8V, 2.5V or 3.3V on LVCMOS output
- Embedded Low Drop Out (LDO) Voltage regulator provides superior Power Supply Noise Rejection
- Maximum output to output skew of 40ps
- · Device controlled via SPI or hardware control pins

Ordering Information

ZL40230LDG1 ZL40230LDF1 48 Pin QFN Trays 48 pin QFN Tape and Reel

Package size: 7 x 7 mm -40°C to +85°C

Applications

- General purpose clock distribution
- Low jitter clock trees
- Logic translation
- Clock and data signal restoration
- Wired communications: OTN, SONET/SDH, GE, 10 GE, FC and 10G FC
- PCI Express generation 1/2/3/4 clock distribution
- Wireless communications
- High performance microprocessor clock distribution
- Test Equipment

Figure 1. Functional Block Diagram

Table of Contents

Features	1
Applications	1
Table of Contents	2
Pin Diagram	5
Pin Descriptions	6
Functional Description	10
Clock Inputs	10
Clock Outputs	13
Crystal Oscillator Input	14
Termination of unused inputs and outputs	14
Power Consumption	14
Power Supply Filtering	16
Power Supplies and Power-up Sequence	16
Host Interface	17
Typical device performance	20
Register Map	24
AC and DC Electrical Characteristics	30
Absolute Maximum Ratings	30
Recommended Operating Conditions	
Change History	
Package Outline	50

List of Figures

Figure 2. Pin Diagram	Figure 1.	Functional Block Diagram	
Figure 3.Input driven by a single ended output.10Figure 4.Input driven by DC coupled LVPECL output.10Figure 5.Input driven by DC coupled LVPECL output.11Figure 6.Input driven by DC coupled LVPECL output.11Figure 7.Input driven by HCS output.12Figure 8.Input driven by VCS output.12Figure 9.Input driven by VCS output.12Figure 10.Input driven by CS output.12Figure 11.Termination for IVCMOS output.13Figure 13.Crystal Oscillator Circuit in Hardware Controlled Mode14Figure 14.Power Supply Filtering16Figure 15.SPI slave interface Functional Waveform - LSB First Mode18Figure 16.Serial Peripheral Interface Functional Waveform - MSB First Mode19Figure 17.Serial Peripheral Interface Functional Waveform - MSB First Mode20Figure 18.Example of the Burst Mode Operation20Figure 20.1.5GHz LVPECL.20Figure 21.15G2.5MHz LVPECL20Figure 23.100MHz HCSL20Figure 24.20MHz LVPECL20Figure 25.1/0 delay vs temperature.21Figure 26.PSN so noise fraguency.21Figure 27.100MHz HCSL20Figure 28.100MHz HCSL20Figure 29.100MHz HCSL20Figure 21.15G2.5MHz LVPSC Hose Noise.21Figure 23.100MHz HCSL20Figure 24.100MH	Figure 2.	Pin Diagram	5
Figure 4.Input driven by DC coupled LVPECL output.10Figure 5.Input driven by DC coupled LVPECL output (alternative termination)11Figure 6.Input driven by AC coupled LVPECL output.11Figure 7.Input driven by AC coupled LVDECL output.12Figure 8.Input driven by AC coupled LVDES12Figure 9.Input driven by AC coupled LVDES12Figure 10.Input driven by AC coupled LVDES12Figure 11.Termination for LVCMOS output13Figure 12.Driving a load via transformer.13Figure 13.Crystal Oscillator Circuit in Hardware Controlled Mode14Figure 14.Power Supply Fiftering16Figure 15.SPI slow einterface.17Figure 16.Serial Peripheral Interface Functional Waveform – LSB First Mode18Figure 17.Serial Peripheral Interface Functional Waveform – MSB First Mode19Figure 19.156.25MHz LVPECL20Figure 20.1.5GHz LVPECL20Figure 21.156.25MHz LVDES20Figure 22.1.5GHz LVPECL20Figure 23.100MHz HCSL20Figure 24.200MHz HCSL20Figure 25.1/O delay vs temperature.21Figure 28.100MHz HCSL20Figure 29.156.25MHz LVDS20Figure 28.100MHz HCSL20Figure 27.100MHz HCSL20Figure 28.100MHz HCSL20Figure 29.156.25MHz LVDS hase Noise21 </td <td>Figure 3.</td> <td>Input driven by a single ended output</td> <td></td>	Figure 3.	Input driven by a single ended output	
Figure 5.Input driven by DC coupled LVPECL output (alternative termination).11Figure 6.Input driven by AC coupled LVPECL output.11Figure 7.Input driven by HCSL output12Figure 8.Input driven by LVDS output12Figure 9.Input driven by Coupled LVDS12Figure 10.Input driven by Coupled LVDS12Figure 11.Termination for LVCMOS output13Figure 13.Crystal Oscillator Circuit in Hardware Controlled Mode14Figure 14.Power Supply Filtering16Figure 15.SPI slave interface17Figure 16.Serial Peripheral Interface Functional Waveform - LSB First Mode19Figure 17.Serial Peripheral Interface Functional Waveform - MSB First Mode19Figure 18.Example of the Burst Mode Operation19Figure 21.156.25MHz LVPECL20Figure 21.156.25MHz LVDS20Figure 21.156.25MHz LVDS20Figure 22.1.5GHz LVPECL20Figure 23.100MHz HCSL20Figure 24.250MHz HCSL20Figure 25.1/0 delay vs temperature20Figure 26.PSNR vs noise frequency21Figure 27.100MHz HCSL20Figure 28.100MHz HCSL20Figure 29.156.25MHz LVDS Phase Noise21Figure 29.156.25MHz LVDS Phase Noise21Figure 29.156.25MHz LVDS Phase Noise21Figure 29.156.25MHz LVDS Phase Noise22	Figure 4.	Input driven by DC coupled LVPECL output	
Figure 6.Input driven by AC coupled LVPECL output.11Figure 7.Input driven by ICSL output12Figure 8.Input driven by LCSL output12Figure 9.Input driven by AC coupled LVDS12Figure 10.Input driven by AC coupled LVDS12Figure 11.Termination for LVCMOS output13Figure 12.Driving a load via transformer	Figure 5.	Input driven by DC coupled LVPECL output (alternative termination)	
Figure 7. Input driven by HCSL output 11 Figure 8. Input driven by LVDS output 12 Figure 9. Input driven by AC coupled LVDS 12 Figure 10. Input driven by AC coupled LVDS 12 Figure 11. Termination for LVCMOS output 13 Figure 12. Driving a load via transformer 13 Figure 13. Crystal Oscillator Circuit in Hardware Controlled Mode 14 Figure 14. Power Supply Filtering 16 Figure 15. SPI slave interface 17 Figure 16. Serial Peripheral Interface Functional Waveform – LSB First Mode 18 Figure 17. Serial Peripheral Interface Functional Waveform – MSB First Mode 19 Figure 19. 156.25MHz LVPECL 20 Figure 21. 156.41 LVPECL 20 Figure 23. 100MHz HCSL 20 Figure 24. 250MHz LVDS 20 Figure 25. I/O delay vs temperoture. 21 Figure 26. PSNR vs noise frequency. 21 Figure 27. 100MHz LVDS Phase Noise 21 </td <td>Figure 6.</td> <td>Input driven by AC coupled LVPECL output</td> <td></td>	Figure 6.	Input driven by AC coupled LVPECL output	
Figure 8.Input driven by UXDS output.12Figure 9.Input driven by AC coupled LVDS.12Figure 10.Input driven by an SSTL output13Figure 11.Termination for LVCMOS output13Figure 12.Driving a load via transformer.13Figure 13.Crystal Oscillator Circuit in Hardware Controlled Mode14Figure 14.Power Supply Filtering16Figure 15.SPI slave interface17Figure 16.Serial Peripheral Interface Functional Waveform – LSB First Mode19Figure 17.Serial Peripheral Interface Functional Waveform – MSB First Mode19Figure 19.156.25MHz LVPECL20Figure 20.1.5GFz LVPECL20Figure 21.1.5GE SchHz LVPECL20Figure 22.1.5GHz LVPECL20Figure 23.100MHz HCSL20Figure 24.250MHz HVDS20Figure 25.I/O delay vs temperature.21Figure 26.PSNR vs noise frequency.21Figure 27.100MHz HCSL20Figure 28.100MHz LVDS Phase Noise21Figure 29.156.25MHz LVDS Phase Noise21Figure 29.156.25MHz LVDS Phase Noise21Figure 21.150.25MHz LVDS Phase Noise22Figure 23.100MHz HCSL Phase Noise22Figure 24.100MHz HCSL Phase Noise22Figure 25.J/O belay vs temperature.21Figure 26.PSNR vs noise frequency.21Figure 27.100MHz	Figure 7.	Input driven by HCSL output	
Figure 9.Input driven by AC coupled LVDS.12Figure 10.Input driven by an SSTL output.12Figure 11.Termination for LVCMOS output.13Figure 12.Driving a load via transformer.13Figure 13.Crystal Oscillator Circuit in Hardware Controlled Mode.14Figure 14.Power Supply Filtering16Figure 15.SPI slave interface.17Figure 16.Serial Peripheral Interface Functional Waveform – LSB First Mode18Figure 17.Serial Peripheral Interface Functional Waveform – MSB First Mode19Figure 18.Example of the Burst Mode Operation20Figure 20.1.5GHz LVPECL20Figure 21.156.2SMHz LVPECL20Figure 23.100MHz HCSL20Figure 24.250MHz LVDS20Figure 25.I/O deloy vs temperature21Figure 26.PSNR vs noise frequency21Figure 27.100MHz LVPECL20Figure 28.100MHz LVDS Phase Noise21Figure 29.15.6.2SMHz LVDS20Figure 27.100MHz LVDS Phase Noise21Figure 28.100MHz LVDS Phase Noise21Figure 29.15.6.2SMHz LVDS Phase Noise21Figure 31.15.6.2SMHz LVDS Phase Noise22Figure 32.0.100MHz LVDS Phase Noise22Figure 33.100MHz LVDS Phase Noise22Figure 34.62SMHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate<	Figure 8.	Input driven by LVDS output	
Figure 10. Input driven by on SSTL output 12 Figure 11. Termination for LVCMOS output 13 Figure 12. Driving a load via transformer 13 Figure 13. Crystal Oscillator Circuit in Hardware Controlled Mode 14 Figure 13. Crystal Oscillator Circuit in Hardware Controlled Mode 14 Figure 14. Power Supply Filtering 16 Figure 15. SPI slave interface 17 Figure 16. Serial Peripheral Interface Functional Waveform – ISB First Mode 18 Figure 18. Example of the Burst Mode Operation 19 Figure 20. 1.5GHz LVPECL 20 Figure 21. 156.25MHz LVPECL 20 Figure 22. 1.5GHz LVPECL 20 Figure 23. 100MHz HCSL 20 Figure 24. 250MHz LVDS 20 Figure 25. I/O delay vs temperature 21 Figure 27. 100MHz HCSL 20 Figure 28. 100MHz LVDS Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 2	Figure 9.	Input driven by AC coupled LVDS	
Figure 11.Termination for LVCMOS output13Figure 12.Driving a load via transformer.13Figure 12.Crystal Oscillator Circuit in Hardware Controlled Mode14Figure 13.Spristave interface16Figure 15.Spristave interface17Figure 15.Spristave interface17Figure 16.Serial Peripheral Interface Functional Waveform – LSB First Mode19Figure 17.Serial Peripheral Interface Functional Waveform – MSB First Mode19Figure 18.Example of the Burst Mode Operation19Figure 20.1.5GHz LVPECL20Figure 21.156.25MHz LVPECL20Figure 23.100MHz HCSL20Figure 24.250MHz HCSL20Figure 25.1/0 delay vs temperature.20Figure 27.100MHz HCSL20Figure 28.1/0 delay vs temperature.20Figure 29.156.25MHz UVDS20Figure 29.156.25MHz UVDS20Figure 29.156.25MHz UVDS20Figure 29.100MHz LVDS Phase Noise.21Figure 29.156.25MHz UVDS Phase Noise.21Figure 29.156.25MHz UVDS Phase Noise21Figure 29.156.25MHz LVDS Phase Noise22Figure 31.156.25MHz LVDS Phase Noise22Figure 33.156.25MHz LVDS Phase Noise22Figure 34.625MHz LVDS Phase Noise22Figure 35.Output Clock noise floor vs input clock slew-rate23Figure 36.	Figure 10.	Input driven by an SSTL output	
Figure 12. Driving a load via transformer. 13 Figure 13. Crystal Oscillator Circuit in Hardware Controlled Mode 14 Figure 13. Crystal Oscillator Circuit in Hardware Controlled Mode 14 Figure 14. Power Supply Filtering 16 Figure 15. SPI slave interface. 17 Figure 16. Serial Peripheral Interface Functional Waveform – ISB First Mode 19 Figure 18. Example of the Burst Mode Operation 19 Figure 19. 156.25MHz LVPECL 20 Figure 20. 1.5GHz LVPECL 20 Figure 21. 1.5G.25MHz LVDS 20 Figure 22. 1.5GHz LVDS 20 Figure 23. 100MHz LVCSL 20 Figure 24. 250MHz HCSL 20 Figure 25. I/O delay vs temperature 20 Figure 26. PSNR vs noise frequency 21 Figure 27. 100MHz LVECL 20 Figure 28. 100MHz LVECL Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 31.	Figure 11.	Termination for LVCMOS output	
Figure 13. Crystal Oscillator Circuit in Hardware Controlled Mode 14 Figure 14. Power Supply Filtering 16 Figure 15. SPI Isolve interface 17 Figure 16. Serial Peripheral Interface Functional Waveform – LSB First Mode 18 Figure 17. Serial Peripheral Interface Functional Waveform – MSB First Mode 19 Figure 18. Example of the Burst Mode Operation 19 Figure 20. 1.5GHz LVPECL 20 Figure 21. 156.2SMHz LVDECL 20 Figure 22. 1.5GHz LVDS 20 Figure 23. 100MHz HCSL 20 Figure 24. 250MHz HCSL 20 Figure 25. I/O delay vs temperature 20 Figure 26. PSNR vs noise frequency 21 Figure 27. 100MHz LVDS Phase Noise 21 Figure 28. 100MHz LVDS Phase Noise 21 Figure 29. 156.2SMHz LVDS Phase Noise 21 Figure 31. 156.2SMHz LVDS Phase Noise 21 Figure 28. 100MHz LVDS Phase Noise 21 Figure 29. 156.2SMHz LVDS Phase Noise 21 <td< td=""><td>Figure 12.</td><td>Driving a load via transformer</td><td></td></td<>	Figure 12.	Driving a load via transformer	
Figure 14. Power Supply Filtering 16 Figure 15. SPI slave interface 17 Figure 16. Serial Peripheral Interface Functional Waveform – LSB First Mode 18 Figure 17. Serial Peripheral Interface Functional Waveform – MSB First Mode 19 Figure 18. Example of the Burst Mode Operation 19 Figure 20. 1.5GHz LVPECL 20 Figure 21. 156.25MHz LVDS 20 Figure 22. 1.5GHz LVPECL 20 Figure 23. 1.00Hz HOSL 20 Figure 24. 250MHz HOSL 20 Figure 25. I/O delay vs temperature 20 Figure 27. 1.00MHz HOSL 20 Figure 28. 100MHz LVDE CL Phase Noise 21 Figure 27. 100MHz LVDS Phase Noise 21 Figure 28. 100MHz LVDS Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 31. 156.25MHz LVDS Phase Noise 21 Figure 28. 100MHz HCSL Phase Noise 22 Figure 31. 156.25MHz LVDS Phase Noise 22 Figure 33. 156.25MHz LVD	Figure 13.	Crystal Oscillator Circuit in Hardware Controlled Mode	
Figure 15. SPI slave interface 17 Figure 15. Serial Peripheral Interface Functional Waveform – LSB First Mode 18 Figure 17. Serial Peripheral Interface Functional Waveform – MSB First Mode 19 Figure 18. Example of the Burst Mode Operation 19 Figure 19. 156.25MHz LVPECL 20 Figure 21. 156.25MHz LVDS 20 Figure 22. 1.5GHz LVPECL 20 Figure 23. 100MHz HCSL 20 Figure 24. 250MHz HCSL 20 Figure 25. I/O delay vs temperature 20 Figure 26. PSNR vs noise frequency 21 Figure 27. 100MHz UCSL Phase Noise 21 Figure 28. 100MHz LVDS Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 31. 156.25MHz LVDS Phase Noise 22 Figure 32. 62SMHz LVDS Phase Noise 22 Figure 33. 156.25MHz LVDS Phase Noise 22 Figure 34. 62SMHz LVDS Phase Noise 22 Figure 33. 156.25MHz LVDS Phase Noise 22 Figure 34. <t< td=""><td>Figure 14.</td><td>Power Supply Filtering</td><td></td></t<>	Figure 14.	Power Supply Filtering	
Figure 16. Serial Peripheral Interface Functional Waveform – LSB First Mode 18 Figure 17. Serial Peripheral Interface Functional Waveform – MSB First Mode 19 Figure 18. Example of the Burst Mode Operation 19 Figure 20. 1.5G.25MHz LVPECL 20 Figure 21. 156.25MHz LVDS 20 Figure 22. 1.5GHz LVDS 20 Figure 23. 100MHz HCSL 20 Figure 24. 250MHz HCSL 20 Figure 25. I/O delay vs temperature 20 Figure 27. 100MHz HCSL 20 Figure 28. 100MHz LVDS Phase Noise 21 Figure 27. 100MHz LVDS Phase Noise 21 Figure 28. 100MHz LVDS Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 31. 156.25MHz LVDS Phase Noise 22 Figure 32. 625MHz LVDS Phase Noise 22 Figure 33. 156.25MHz LVDS Phase Noise 22 Figure 33. 156.25MHz LVDS Phase Noise 22 Figure 33. 156.25MHz LVDS Phase Noise 22 Figure 33. 156.	Figure 15.	SPI slave interface	
Figure 17. Serial Peripheral Interface Functional Waveform – MSB First Mode 19 Figure 18. Example of the Burst Mode Operation 19 Figure 19. 156.25MHz LVPECL 20 Figure 20. 1.5GHz LVPECL 20 Figure 21. 156.25MHz LVDS 20 Figure 22. 1.5GHz LVPECL 20 Figure 23. 100MHz HCSL 20 Figure 24. 250MHz HCSL 20 Figure 25. I/O delay vs temperature 20 Figure 26. PSNR vs noise frequency 21 Figure 27. 100MHz LVDS Phase Noise 21 Figure 28. 100MHz LVDS Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 30. 100MHz LVDS Phase Noise 21 Figure 31. 156.25MHz LVDS Phase Noise 22 Figure 32. 625MHz LVDS Phase Noise 22 Figure 33. 156.25MHz LVDS Phase Noise 22 Figure 34. 625MHz LVPECL Phase Noise 22 Figure 35. Output HCL Phase Noise 22 Figure 34. 625MHz LVDS Phase Noise 22	Figure 16.	Serial Peripheral Interface Functional Waveform – LSB First Mode	
Figure 18. Example of the Burst Mode Operation 19 Figure 19. 156.25MHz LVPECL 20 Figure 20. 1.5GHz LVPECL 20 Figure 21. 156.25MHz LVDS 20 Figure 22. 1.5GHz LVDS 20 Figure 23. 100MHz HCSL 20 Figure 24. 250MHz HCSL 20 Figure 25. I/O delay st emperature 20 Figure 26. PSNR vs noise frequency 21 Figure 27. 100MHz LVPECL Phase Noise 21 Figure 28. 100MHz LVPECL Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 30. 100MHz LVDS Phase Noise 21 Figure 31. 156.25MHz LVPECL Phase Noise 21 Figure 32. 625MHz LVDS Phase Noise 22 Figure 33. 156.25MHz LVPECL Phase Noise 22 Figure 34. 625MHz LVDS Phase Noise 22 Figure 35. Output RMS jitter (12Hz to 20MHz) vs input clock slew-rate 23 Figure 36. Output RMS jitter (12Hz to 20MHz) vs input clock slew-rate 23 Figure 37. Output RMS jit	Figure 17.	Serial Peripheral Interface Functional Waveform – MSB First Mode	
Figure 19. 156.25MHz LVPECL. 20 Figure 20. 1.5GHz LVPECL 20 Figure 21. 156.25MHz LVDS 20 Figure 22. 1.5GHz LVDS 20 Figure 23. 100MHz HCSL 20 Figure 24. 250MHz HCSL 20 Figure 25. I/O delay vs temperature 20 Figure 26. PSNR vs noise frequency 21 Figure 27. 100MHz LVDS Phase Noise 21 Figure 28. 100MHz LVDS Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 30. 100MHz HCSL Phase Noise 21 Figure 31. 156.25MHz LVDS Phase Noise 22 Figure 31. 156.25MHz LVDECL Phase Noise 22 Figure 32. 625MHz LVPECL Phase Noise 22 Figure 33. 156.25MHz LVDECL Phase Noise 22 Figure 33. 156.25MHz LVPECL Phase Noise 22 Figure 33. 156.25MHz LVPECL Phase Noise 22 Figure 34. 625MHz LVPECL Phase Noise 22 Figure 35. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate 23 <td>Figure 18.</td> <td>Example of the Burst Mode Operation</td> <td></td>	Figure 18.	Example of the Burst Mode Operation	
Figure 20. 1.5GHz LVPECL 20 Figure 21. 156.25MHz LVDS 20 Figure 22. 1.5GHz LVDS 20 Figure 23. 100MHz HCSL 20 Figure 24. 250MHz HCSL 20 Figure 25. I/O delay vs temperature 20 Figure 26. PSNR vs noise frequency 21 Figure 27. 100MHz LVPECL Phase Noise 21 Figure 28. 100MHz LVDS Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 30. 100MHz HCSL Phase Noise 21 Figure 31. 156.25MHz LVDS Phase Noise 21 Figure 32. 625MHz LVDS Phase Noise 22 Figure 33. 156.25MHz LVDS Phase Noise 22 Figure 34. 625MHz LVDS Phase Noise 22 Figure 35. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate 23 Figure 36. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate 23 Figure 37. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate 23 Figure 38. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate 23 <	Figure 19.	156.25MHz LVPECL	
Figure 21. 156.25MHz LVDS 20 Figure 22. 1.5GHz LVDS 20 Figure 23. 100MHz HCSL 20 Figure 24. 250MHz HCSL 20 Figure 25. I/O delay vs temperature 21 Figure 26. PSNR vs noise frequency 21 Figure 27. 100MHz LVDE Phase Noise 21 Figure 28. 100MHz LVDS Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 30. 100MHz LVDS Phase Noise 21 Figure 31. 156.25MHz LVDS Phase Noise 21 Figure 32. 625MHz LVDS Phase Noise 22 Figure 31. 156.25MHz LVDE CL Phase Noise 22 Figure 32. 625MHz LVDS Phase Noise 22 Figure 33. 156.25MHz LVDS Phase Noise 22 Figure 34. 625MHz LVDS Phase Noise 22 Figure 35. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate 23 Figure 36. Output clock noise floor vs input clock slew-rate 23 Figure 37. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate 23 Figure 3	Figure 20.	1.5GHz LVPECL	
Figure 22. 1.5GHz LVDS 20 Figure 23. 100MHz HCSL 20 Figure 24. 250MHz HCSL 20 Figure 25. I/O delay vs temperature 21 Figure 26. PSNR vs noise frequency 21 Figure 27. 100MHz LVPECL Phase Noise 21 Figure 28. 100MHz LVDS Phase Noise 21 Figure 29. 156.25MHz LVDS Phase Noise 21 Figure 30. 100MHz HCSL Phase Noise 21 Figure 31. 156.25MHz LVDS Phase Noise 21 Figure 32. 625MHz LVDS Phase Noise 22 Figure 33. 156.25MHz LVDS Phase Noise 22 Figure 34. 625MHz LVDS Phase Noise 22 Figure 35. Output RMS jitter (12Hz to 20MHz) vs input clock slew-rate 23 Figure 36. Output RMS jitter (12Hz to 20MHz) vs input clock slew-rate 23 Figure 37. Output RMS jitter (12Hz to 20MHz) vs input clock slew-rate 23 Figure 38. Output clock noise floor vs input clock slew-rate 23 Figure 39. Output RMS jitter (12Hz to 20MHz) vs input clock slew-rate 23 Figure 31. Differentia	Figure 21.	156.25MHz LVDS	
Figure 23. 100MHz HCSL	Figure 22.	1.5GHz LVDS	
Figure 24.250MHz HCSL20Figure 25.I/O delay vs temperature21Figure 25.PSNR vs noise frequency21Figure 26.PSNR vs noise frequency21Figure 27.100MHz LVPECL Phase Noise21Figure 28.100MHz LVDS Phase Noise21Figure 29.156.25MHz LVDS Phase Noise in Xtal mode21Figure 30.100MHz HCSL Phase Noise21Figure 31.156.25MHz LVDE Phase Noise22Figure 32.625MHz LVPECL Phase Noise22Figure 33.156.25MHz LVDS Phase Noise22Figure 34.625MHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 36.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 40.Output Clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Input Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 23.	100MHz HCSL	
Figure 25.I/O delay vs temperature21Figure 26.PSNR vs noise frequency21Figure 27.100MHz LVPECL Phase Noise21Figure 28.100MHz LVDS Phase Noise21Figure 29.156.25MHz LVDS Phase Noise in Xtal mode21Figure 30.100MHz HCSL Phase Noise21Figure 31.156.25MHz LVDS Phase Noise21Figure 32.625MHz LVPECL Phase Noise22Figure 33.156.25MHz LVPECL Phase Noise22Figure 34.625MHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 36.Output clock noise floor vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output Clock noise floor vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels31Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 24.	250MHz HCSL	
Figure 26.PSNR vs noise frequency21Figure 27.100MHz LVPECL Phase Noise21Figure 28.100MHz LVDS Phase Noise21Figure 29.156.25MHz LVDS Phase Noise in Xtal mode21Figure 30.100MHz HCSL Phase Noise21Figure 31.156.25MHz LVDS Phase Noise21Figure 32.625MHz LVPECL Phase Noise22Figure 33.156.25MHz LVDS Phase Noise22Figure 34.625MHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output clock noise floor vs input clock slew-rate23Figure 39.Output clock noise floor vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 25.	I/O delay vs temperature	
Figure 27.100MHz LVPECL Phase Noise21Figure 28.100MHz LVDS Phase Noise21Figure 29.156.25MHz LVDS Phase Noise in Xtal mode21Figure 30.100MHz HCSL Phase Noise21Figure 31.156.25MHz LVPECL Phase Noise22Figure 32.625MHz LVPECL Phase Noise22Figure 33.156.25MHz LVPECL Phase Noise22Figure 34.625MHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 36.Output clock noise floor vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output Clock noise floor vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 26.	PSNR vs noise frequency	
Figure 28.100MHz LVDS Phase Noise21Figure 29.156.25MHz LVDS Phase Noise in Xtal mode21Figure 30.100MHz HCSL Phase Noise21Figure 31.156.25MHz LVPECL Phase Noise22Figure 32.625MHz LVPECL Phase Noise22Figure 33.156.25MHz LVDS Phase Noise22Figure 34.625MHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 36.Output clock noise floor vs input clock slew-rate23Figure 37.Output clock noise floor vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output clock noise floor vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Input Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 27.	100MHz LVPECL Phase Noise	
Figure 29.156.25MHz LVDS Phase Noise in Xtal mode21Figure 30.100MHz HCSL Phase Noise21Figure 31.156.25MHz LVPECL Phase Noise22Figure 32.625MHz LVPECL Phase Noise22Figure 33.156.25MHz LVDS Phase Noise22Figure 34.625MHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 36.Output clock noise floor vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output clock noise floor vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 28.	100MHz LVDS Phase Noise	
Figure 30.100MHz HCSL Phase Noise21Figure 31.156.25MHz LVPECL Phase Noise22Figure 32.625MHz LVPECL Phase Noise22Figure 33.156.25MHz LVDS Phase Noise22Figure 34.625MHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 36.Output clock noise floor vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output clock noise floor vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 29.	156.25MHz LVDS Phase Noise in Xtal mode	
Figure 31.156.25MHz LVPECL Phase Noise.22Figure 32.625MHz LVPECL Phase Noise.22Figure 33.156.25MHz LVDS Phase Noise22Figure 34.625MHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 36.Output clock noise floor vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 37.Output clock noise floor vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output clock noise floor vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 30.	100MHz HCSL Phase Noise	
Figure 32.625MHz LVPECL Phase Noise22Figure 33.156.25MHz LVDS Phase Noise22Figure 34.625MHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 36.Output clock noise floor vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 40.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 31.	156.25MHz LVPECL Phase Noise	
Figure 33.156.25MHz LVDS Phase Noise22Figure 34.625MHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 36.Output clock noise floor vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output clock noise floor vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 32.	625MHz LVPECL Phase Noise	
Figure 34.625MHz LVDS Phase Noise22Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 36.Output clock noise floor vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 33.	156.25MHz LVDS Phase Noise	
Figure 35.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 36.Output clock noise floor vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 39.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels23Figure 42.Differential Output Voltage Levels31Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 34.	625MHz LVDS Phase Noise	
Figure 36.Output clock noise floor vs input clock slew-rate23Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 35.	Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate	
Figure 37.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 36.	Output clock noise floor vs input clock slew-rate	
Figure 38.Output clock noise floor vs input clock slew-rate23Figure 39.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 37.	Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate	
Figure 39.Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate23Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 38.	Output clock noise floor vs input clock slew-rate	
Figure 40.Output clock noise floor vs input clock slew-rate23Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 39.	Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate	
Figure 41.Differential Input Voltage Levels31Figure 42.Differential Output Voltage Levels35Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode47Figure 44.SPI (Serial Peripheral Interface) Timing - MSB First Mode47	Figure 40.	Output clock noise floor vs input clock slew-rate	
Figure 42.Differential Output Voltage Levels	Figure 41.	Differential Input Voltage Levels	
Figure 43.SPI (Serial Peripheral Interface) Timing - LSB First Mode	- Figure 42.	Differential Output Voltage Levels	
Figure 44. SPI (Serial Peripheral Interface) Timing - MSB First Mode	Figure 43.	SPI (Serial Peripheral Interface) Timing - LSB First Mode	
	Figure 44.	SPI (Serial Peripheral Interface) Timing - MSB First Mode	

List of Tables

Table 1 Pin Descriptions	6
Table 2 Input clock selection	17
Table 3 Output Type Selection	17
Table 4 Register Map	24
Table 5 Absolute Maximum Ratings*	30
Table 6 Recommended Operating Conditions*	30
Table 7 Current consumption	30
Table 8 Input Characteristics*	31
Table 9 Crystal Oscillator Characteristics*	32
Table 10 Power Supply Rejection Ratio for VDD = VDDO = 3.3V*	32
Table 11 Power Supply Rejection Ratio for VDD = VDDO = 2.5V*	33
Table 12 LVCMOS Output Characteristics for VDDO = 3.3V*	33
Table 13 LVCMOS Output Characteristics for VDDO = 2.5V*	34
Table 14 LVPECL Output Characteristics for VDDO = 3.3V*	35
Table 15 LVPECL Output Characteristics for VDDO = 2.5V*	36
Table 16 LVDS Outputs for VDDO = 3.3V*	37
Table 17 LVDS Outputs for VDDO = 2.5V*	38
Table 18 HCSL Outputs for VDDO = 3.3V*	39
Table 19 HCSL Outputs for VDDO = 2.5V*	40
Table 20 LVCMOS Output Phase Noise with 25 MHz XTAL*	41
Table 21 LVPECL Output Phase Noise with 25 MHz XTAL*	41
Table 22 LVDS Output Phase Noise with 25 MHz XTAL	42
Table 23 HCSL Output Phase Noise with 25 MHz XTAL	42
Table 24 LVCMOS Output Phase Noise with 125 MHz XTAL*	43
Table 25 LVPECL Output Phase Noise with 125 MHz XTAL*	43
Table 26 LVDS Output Phase Noise with 125 MHz XTAL	44
Table 27 HCSL Output Phase Noise with 125 MHz XTAL	44
Table 28 LVCMOS Output Phase Noise with 156.25 MHz XTAL*	45
Table 29 LVPECL Output Phase Noise with 156.25 MHz XTAL*	45
Table 30 LVDS Output Phase Noise with 156.25 MHz XTAL	46
Table 31 HCSL Output Phase Noise with 156.25 MHz XTAL	46
Table 32 AC Electrical Characteristics* - SPI (Serial Peripheral Interface) Timing	47
Table 33 7x7mm QFN Package Thermal Properties	48

Pin Diagram

The device is packaged in a 7x7mm 48-pin QFN.

Figure 2. Pin Diagram

Pin Descriptions

All device inputs and outputs are LVPECL unless described otherwise. The I/O column uses the following symbols: I – input, I_{PU} – input with 300k Ω internal pull-up resistor, I_{PD} – input with 300k Ω internal pull-down resistor, I_{APU} – input with 31k Ω internal pull-up resistor, I_{APD} – input with 30k Ω internal pull-down resistor, $I_{APU/APD}$ – input biased to VDD/2 with 60k Ω internal pull-up and pull-down resistors (30 k Ω equivalent), O – output, I/O – Input/Output pin, NC – No connect, P – power supply pin.

Table '	1 Pin	Descri	ptions
---------	-------	--------	--------

#	Name	I/O	Description				
Input Refe	nput Reference						
20 21 41 40	IN0_p IN0_n IN1_p IN1_n	I _{APD} I _{APU/APD} I _{APD} I _{APU/APD}	Differential/Single Ended References 0 and 1 Input frequency range 0Hz to 1.6GHz. Non-inverting inputs (_p) are pulled down with internal $30k\Omega$ pull-down resistors. Inverting inputs (_n) are pulled up and pulled down with $60k\Omega$ internal resistors ($30k\Omega$ equivalent) to keep inverting input voltages at VDD/2 when inverting inputs are left floating (device fed with a single ended reference).				
Output Cle	ocks						
1 2 3 4 6 7 9 10 11 12 36 35 34 33 31 30 28 27 26 25	OUT0_p OUT0_n OUT1_p OUT1_n OUT2_p OUT2_n OUT3_p OUT3_n OUT4_p OUT4_n OUT5_p OUT5_n OUT5_n OUT5_n OUT6_p OUT6_n OUT7_n OUT7_n OUT7_n OUT8_p OUT8_n OUT8_n OUT9_p OUT9_n	0	Ultra-Low Additive Jitter Differential LVPECL/HCSL/LVDS Outputs 0 to 9 Output frequency range 0 to 1.6GHz In SPI bus controlled mode (SEL pin pulled high on the power up) type (LVPECL/HCSL/LVDS/High-Z) of each output is programmable via SPI bus In Hardware control mode (SEL pin pulled low on the power up) type (LVPECL/HCSL/LVDS/High-Z) of each output bank is controlled via OUTA/B_TYPE_SEL0/1 pins.				
44	OUT_LVCMOS	0	Ultra-Low Additive Jitter LVCMOS Output 0 to 9 Output frequency range 0 to 250MHz				
Control			·				

19	IN_SEL0/SPI_CLK	I _{PD} or I _{PU}	Input Select 0 or Clock for Serial Interface When SEL pin is low this pin is Input Select 0 hardware control input pin and it is pulled-down with 300 k Ω resistor. When SEL pin is high this pin provides clock for serial micro-port interface and it is pulled-up with 300 k Ω resistor.				
			IN_SEL1	IN_SEL0		OUTN	
			0	0	Ir	put 0 (IN0)	
			0	1	Ir	iput 1 (IN1)	
			1	0	Crystal Os	scillator or overdrive	
			1	1	Cr	ystal Bypass	
22	IN_SEL1/SPI_SDI	I _{PD} or I _{PU}	Input Select 1 or Serial Interface Input. When SEL pin is low this pin is Input Select 1 hardware control pin and it is pulled-down with 300 k Ω resistor. When SEL pin is high this pin is serial interface input stream and it is pulled-up with 300 k Ω resistor. The serial data stream holds the access command, the address and the write data bits.				
23	OUTB_TYPE_SEL0 SPI_SDO	I/O	Output Signal for Bank B or Serial Interface Output. When SEL pin is low this pin and pin 39 select type of the output Bank B (outputs 5 to 9).				
			OUTB_TYF	PE_SEL1	OUTB_TYPE_SEL0	Output 5 to 9	
			0)	0	LVPECL	
			0	0 1		LVDS	
			1		0	HCSL	
			1 1 High-Z		High-Z (Disabled)		
			When SEL serial strea	pin is high m holds the	this pin is Serial interface read data bits.	output stream. As an output the	
39	OUTB_TYPE_SEL1	I _{PD}	Output Signal for Bank B When SEL pin is low this pin and pin 23 selects type of the output Bank B (outputs 5 to 9). When SEL pin is high this pin is unused and it should be left unconnected or connected to GND for mechanical support.				
46	LVCMOS_OE/ SPI_CS_b	I _{PD} or I _{PU}	LVCMOS Output Enable or Chip Select for Serial Interface. When SEL pin is low this pin is LVCMOS Output Enable hardware control input and it is pulled-down with 300 k Ω resistor. When SEL pin is high this pin is serial interface chip select and it is pulled-up with 300 k Ω resistorthis is an active low signal.				

14 47	OUTA_TYPE_SEL0 OUTA_TYPE_SEL1	I _{PD}	Output Signal for Bank A: When SEL pin is low these two pins Selects Type of the output for Bank A (Outputs 0 to 4)				
			OUTA_TYPE_SEL1	OUTA_TYPE_SEL0	Output 0 to 4		
			0	0	LVPECL		
			0	1	LVDS		
			1	0	HCSL		
			1	1	High-Z (Disabled)		
		When SEL pin is high t connected to GND for	these two pins are unuse mechanical support.	d and should be left unconnected or			

Crystal Oscillator

16	XIN	I	Crystal Oscillator Input or crystal bypass mode or crystal overdrive mode
			If crystal oscillator circuit is not used connect pull down this pin or connect it to ground.
17	XOUT	0	Crystal Oscillator Output

Hardware/SPI Control selection

38	SEL	I	Select control.
			When this pin is low, the device is controlled via hardware pins, IN_SEL0/1 and OE.
			When this pin is high, the device is controlled via SPI port.
			Any change of SEL pin value requires power cycle. Hence, SEL pin cannot be changed on the fly.

Power and Ground

15 42	VDD	Ρ	Positive Supply Voltage. Connect to 3.3V or 2.5V supply.
5 8	VDDO_A	Р	Positive Supply Voltage for Differential Outputs Bank A Connect to 3.3V or 2.5V power supply. VDDO_A does not have to be connected to the same voltage level as VDD or VDDO_B. These pins power up differential outputs OUT[0:4]_p/n.
29 32	VDDO_B	Ρ	Positive Supply Voltage for Differential Outputs Bank B Connect to 3.3V or 2.5V power supply. VDDO_B does not have to be connected to the same voltage level as VDD or VDDO_A. These pins power up differential outputs OUT[5:9]_p/n.
45	VDD_LVCMOS	Ρ	Power Supply Voltage for LVCMOS Output Connect to 3.3V, 2.5V, 1.8V or 1.5V power supply.

13 18 24 43 37 48	GND	Ρ	Ground Connect to ground
E-Pad	GND	Ρ	Ground. Connect to ground

Functional Description

The ZL40230 is a programmable or hardware pin controlled low additive jitter, low power 3 x 10 LVPECL/HCSL/LVDS fanout buffer.

Two inputs can accept signal in differential (LVPECL, SSTL, LVDS, HSTL, CML) or single ended (LVPECL or LVCMOS) format and the third input can accept a single ended signal or it can be used to build a crystal oscillator by connecting an external crystal resonator between its XIN and XOUT pins. All the other components for building crystal oscillator are built in device such as load capacitance, series and shunt resistors.

The ZL40230 has ten LVPECL/HCSL/LVDS outputs which can be powered from 3.3V or 2.5V supply. Each output can be independently enabled/disabled via SPI bus. The type of each output driver can be programmed to be LVPECL, HCSL or LVDS. Hence, the device can be configured to support different signaling formats depending on the application.

The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its operation is guaranteed over the industrial temperature range -40°C to +85°C.

Clock Inputs

The following blocks diagram shows how to terminate different signals fed to the ZL40230 inputs.

Figure 3 shows how to terminate a single ended output such as LVCMOS. Ideally, resistors R1 and R2 should be 100Ω each and R0 + Rs should be 50Ω so that the transmission line is terminated at both ends with characteristic impedance. If the driving strength of the output driver is not sufficient to drive low impedance, the value of series resistor Rs should be increased. This will reduce the voltage swing at the input but this should be fine as long as the input voltage swing requirement is not violated (Table 8). The source resistors of Rs = 270Ω could be used for standard LVCMOS driver. This will provide 516mV of voltage swing for 3.3V LVCMOS driver with load current of $(3.3V/2) *(1/(270\Omega + 50\Omega)) = 5.16$ mA.

For optimum performance both differential input pins (_p and _n) need to be DC biased to the same voltage. Hence, the ratio R1/R2 should be equal to the ratio R3/R4.

Figure 3. Input driven by a single ended output

Figure 4. Input driven by DC coupled LVPECL output

Figure 6. Input driven by AC coupled LVPECL output

Figure 7. Input driven by HCSL output

Figure 8. Input driven by LVDS output

Figure 9. Input driven by AC coupled LVDS

Figure 10. Input driven by an SSTL output

Clock Outputs

LVCMOS output OUT10 require only series termination resistor whose value is depending on LVCMOS output voltage as shown in Figure 11.

Figure 11. Termination for LVCMOS output

Differential outputs LVPECL and LVDS should have same termination as corresponding outputs described in previous section. HCSL outputs should be terminated with 33Ω series resistors at the source and 50Ω shunt resistors at the source or at the end on the transmission line. AC coupling and re-biasing is not required at the outputs when driving native HCSL receivers.

The device is designed to drive differential input of semiconductor devices. In applications that use a transformer to convert from the differential to the single ended output (for example driving an oscilloscope 50Ω input), a resistor larger than 10Ω should be added at the center tap of the primary winding to achieve optimum jitter performance as shown in Figure 12. This is to provide a nominal common mode impedance of 10Ω or higher which is typical for differential terminations.

Figure 12. Driving a load via transformer

Crystal Oscillator Input

The crystal oscillator circuit can work with crystal resonators from 8MHz to 160MHz. To be able to support crystal resonators with different characteristics all internal components are programmable.

The load capacitors can be programmed from 0 to 21.75 pF (4pF default) with resolution of 0.25pF which not only meets load requirement for most crystal resonator but also allows for fine tuning of the crystal resonator frequency. The amplifier gain can be adjusted in five steps and series resistor can be adjusted as parallel combination of seven different resistors: 0Ω , 10.5Ω , 21Ω , 42Ω , 84Ω , 161Ω and 312Ω .(84Ω default) Although the first resistor is 0Ω the series resistance Rs will be slightly higher than 0Ω due to parasitic resistance of the switch which connects resistor. Hence the minimum series resistance is achieved when all seven resistors are connected in parallel. The shunt resistor is fixed and its value is $500k\Omega$.

In Hardware Controlled mode the capacitive load is set at 4pF, internal series resistance to 84Ω and they cannot be changed. For Crystal requiring higher load or series resistance additional capacitance and/or series resistance can be added externally as shown in the Figure 13.

Figure 13. Crystal Oscillator Circuit in Hardware Controlled Mode

Termination of unused inputs and outputs

Unused inputs can be left unconnected or alternatively IN_0/1 can be pulled-down by $1k\Omega$ resistor. Unused outputs should be left unconnected.

Power Consumption

The device total power consumption can be calculated as:

$$P_T = P_S + P_{XTAL} + P_C + P_{O_DIF} + P_{O_LVCMOS}$$

Where:

 $P_{s} = V_{DD} \times I_{s}$ The core power when XTAL is not used. The current is specified in Table 7. If XTAL is running this power should be set to zero.

$$P_{XTAL} = V_{DD} \times I_{DD_XTAL}$$
The core power when XTAL is used. The current
is provided in Table 7. . If XTAL is not used this
power should be set to zero.
$$P_C = V_{DDO} \times I_{DD_CM}$$
Common output power shared among all ten

outputs. The current IDD CM is specified Table 7.

$$\begin{split} P_{O_{-DIF}} = V_{DDO} \times (I_{DD_{-}LVDS} \times N_{1} \\ + I_{DD_{-}LVPECL} \times N_{2} + I_{DD_{-}HCSL} \times N_{3}) \end{split}$$

$$P_{O_{LVCMOS}} = V_{DD_{LVCMOS}} \times (I_{DD} \times f / 100MHz + V_{DD_{LVCMOS}} \times C_{LOAD} \times f)$$

Output power where the output currents are specified Table 7. N_1 , N_2 and N_3 are number of enabled LVPECL, LVDS and HSCL outputs respectively and $N_1+N_2+N_3$ is less or equal to 10.

Dynamic LVCMOS output power. I_{DD} is specified in Table 7. If LVCMOS output is disabled this term is equal to zero.

Power dissipated inside the device can be calculated by subtracting power dissipated in termination/biasing resistors from the power consumption.

$$P_D = P_T - N_1 \times P_{LVPECL} - N_2 \times P_{LVDS} - N_3 \times P_{HCSL}$$

Where N_1 , N_2 and N_3 are the number of enabled LVPECL, LVDS and HSCL outputs respectively. Since there are ten differential outputs $N_1 + N_2 + N_3$ will be less or equal to 10.

$$P_{LVPECL} = (V_{OH} - V_B)^2 / 50\Omega + (V_{OL} - V_B)^2 / 50\Omega + (V_{OH} - V_B) \times V_B / 50\Omega + (V_{OL} - V_B) \times V_B / 50\Omega$$

 $P_{LVDS} = V_{SW}^{2} / 100\Omega$

$$P_{HCSL} = (V_{SW} / 50\Omega)^2 \times (33\Omega + 50\Omega)$$

 V_{OH} and V_{OL} are the output high and low voltages respectively for LVPECL output V_B is LVPECL bias voltage equal to $V_{DD} - 2V$

V_{SW} is voltage swing of LVDS output.

 V_{SW} is voltage swing of HCSL output. 50Ω is termination resistance and 33Ω is series resistance of the HCSL output.

Power Supply Filtering

Each power pin (VDD and VDDO) should be decoupled with 0.1µF capacitor with minimum equivalent series resistance (ESR) and minimum series inductance (ESL). For example, 0402 X5R Ceramic Capacitors with 6.3V minimum rating could be used. These capacitors should be placed as close as possible to the power pins. To reduce the power noise from adjacent digital components on the board each power supply could be further insulated with low resistance ferrite bead with two capacitors. The ferrite bead will also insulate adjacent component from the noise generated from the device. Following figure shows recommended decoupling for each power pin.

Figure 14. Power Supply Filtering

Power Supplies and Power-up Sequence

The device has four different power supplies: VDD, VDDO_A, VDDO_B and VDD_LVCMOS which are mutually independent. Voltages supported by each of these power supplies are specified in Table 1.

The device is not sensitive to the power-up sequence. For example, commonly used sequence where higher voltage comes up before or at the same time as the lower voltages can be used (or any other sequence).

Host Interface

ZL30230 can be controlled via hardware pins (SEL pin tied low) or via SPI port (SEL pin tied high). The mode shall be selected during power up and it cannot be changed on the fly.

Hardware Control Mode

In this mode, ZL40230 is controlled via Input Select (IN_SEL0/1) pins which select which one of three inputs is fed to the output and show in Table 2 and OUTA/B_TYPE_SEL0/1 pins which select signal level (LVPECL, LVDS, HCSL or Hi-Z) for each of two (A and B) output banks as shown in Table 3.

All input control pins have low input threshold voltage so they can be driven from the device with low output voltage (FPGA/CPLD). Supported voltages are between 1.2V and VDD (2.5V or 3.3V).

Table 2 Input clock selection

IN_SEL1	IN_SEL0	Selected Input
0	0	IN0_p, IN0_n
0	1	IN1_p, IN1_n
1	Х	XIN

Table 3 Output Type Selection

OUTA/B_TYPE_SEL1	OUTA/B_TYPE_SEL0	Output
0	0	LVPECL
0	1	LVDS
1	0	HCSL
1	1	High-Z (Output Disabled)

SPI Control Mode

ZL40230 is controlled via four pin SPI slave interface as shown in the following figure.

Figure 15. SPI slave interface

All SPI input pins have low threshold voltage so they can be driven from low output voltage SPI master device. Supported voltages are between 1.2V and VDD (2.5V or 3.3V). This allows device to be controlled from an FPGA with low voltage I/O supply.

The serial peripheral interface supports half-duplex processor mode which means that during a write cycle to the device, output data from the **SO** pin must be ignored. Similarly, the input data on the **SI** pin is ignored by the device during a read cycle.

The SPI interface supports two modes of access: Most Significant bit (MSb) first transmission or Least Significant bit (LSb) first transmission. The mode is automatically selected based on the state of **SCK** pin when the **CS_b** pin is

active. If the SCK pin is low during CS_b activation, then MSb first timing is selected. If the SCK pin is high during CS_b activation, then LSb first timing is assumed.

The SPI port expects 1-bit to differentiate between read and write operation followed by 7-bit addressing and 8-bit data transmission. During SPI access, the **CS_b** pin must be held low until the operation is complete. Burst read/write mode is also supported by leaving the chip select signal **CS_b** is low after a read or a write. The address will be automatically incremented after each data byte is read or written.

Functional waveforms for the LSb and MSb first mode, and burst mode are shown in Figure 16 and Figure 17 respectively. Figure 18 shows an example of burst mode operation which allows user to read or write consecutive location in the register map.

sck –		
Read fror	n the device	
si _	Rd A0 A1 A2 A3 A4 A5 A6	x x x x x x x x
so		D0 D1 D2 D3 D4 D5 D6 D7
Write to th	ne device	
si _	Wr A0 A1 A2 A3 A4 A5 A6	D0 D1 D2 D3 D4 D5 D6 D7
 SO	Command/Address	X X

Figure 16. Serial Peripheral Interface Functional Waveform – LSB First Mode

_b		
sck -		
Read from	the device	
si	Rd A6 A5 A4 A3 A2 A1 A0	X X X X X X X X
SO _		
Write to the	e device	
si _	Wr A6 A5 A4 A3 A2 A1 A0	D7 D6 D5 D4 D3 D2 D1 D0
-		— x x x x x x x x _ x _ x
SO	Command/Address	Data

Figure 17. Serial Peripheral Interface Functional Waveform – MSB First Mode

Figure 18. Example of the Burst Mode Operation

Typical device performance

The following plots show typical device performances

Figure 21. 156.25MHz LVDS

Figure 20. 1.5GHz LVPECL

-20.00

-30.0

-40.00

-50.00

-60.00

-70.0

-80.00

-90.00

-170.0

-180 IF Gain 40dB

Input clock phase nois

100MHz LVDS Phase Noise

LO Opt [<150k

Carrier 99.95 4828 dBc/Hz 8868 dBc/Hz 8275-dBc/Hz 9673 dBc/Hz 8275-dBc/Hz 8275-dBc/Hz 8275-dBc/Hz 9673 dBc/Hz 9673 dBc/Hz 6911 dBc/Hz

. 8868 . 8275 . 9673 . 3826 . 8275 . 7919 . 9673 . 3826 . 6911

100 kH: 1 MHZ 10 MHZ 20 MHZ 1 MHZ 5 MHZ 10 MHZ 20 MHZ 40 MH:

40 MHz -159.6 tart 12 kHz stop 20 MHz nter 10.006 MHz Span 19.988 MHz

Range X: Band Mark Range Y: Band Mark se: -85 0422 dBc

Xtal mode

100MHz HCSL Phase Noise Figure 30.

Figure 33. 156.25MHz LVDS Phase Noise

LO Opt [<150k

se noise

Input clock pha

a Band (99M-1.5GHz)

Figure 34. 625MHz LVDS Phase Noise

Input clock phase noise

-160.0

-170.0

160.

-170.0

Figure 39. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate

Figure 36.

Output clock noise floor vs input clock slew-rate

Output clock noise floor vs input Figure 38. clock slew-rate

clock slew-rate

Register Map

The device is controlled by accessing registers through the serial interface. The following table provides a summary of the registers available for the configuration of the device.

Address		
SPI A[6:0]	Name	Data D[7:0]
Hex (UX)		
00	XTALBG	xtal_buf_gain[7:0]
01	XTALDL	xtal_drive_level[7:0]
02	XTALLC	xtal_load_cap[7:0]
03	XTALNR	xtal_normal_run
04	-	Not used
05	INSEL	input_select[1:0]
06	OUTLOW	output_drive_low
07	DRVTYPEA0	driver_type[7:0] (differential output OUT3, OUT2, OUT1, OUT0)
08	DRVTYPEA1	driver_type[9:8] (differential output OUT4)
09	DRVTYPEB0	driver_type[17:10] (differential output OUT8, OUT7, OUT6, OUT5)
0A	DRVTYPEB1	driver_type[19:18] (differential output OUT9)
0B	CMOSDIV	cmos_div[2:0] (cmos)
0C	CMOSOUTEN	output_enable (cmos)
0D	CMOSDRVSTR	driver_strength (cmos)
0E	-	Not used
0F and 10	Reserved	Leave as default
11	DEVID	Device ID
12 to 1F	Reserved	Leave as default

Table 4 Register Map

🏷 Microsemi.
а 🐼 Міскоснір company

Address	0x00			Hex
XTALBG		XTAL Buffer Gain		
Bit	Name	Description	Туре	Reset
7:0	xtal_buf_gain[7:0]	 Programs crystal buffer (inverting amplifier) gain. Every bit pair (bits: 01, 23, 45, 67) of this register correspond to additional equal gain block which can be added (bits set) or removed (bits cleared). Minimum gain is 0x00 (default) and 0xFF is maximum gain When reference input mode is "bypass XTAL mode" or "differential input modes" with HIGH xtal_normal_run bit, the buffer is disabled and follows "Input Selection". When xtal_normal_run bit is LOW, XTAL buffer is in the "xtal forced run" mode and keep running. 8'b0000_0000: default crystal buffer strength. 8'b0000_0111: enable additional buffer strength 8'b0011_0000: enable additional buffer strength 8'b1100_0000: enable additional buffer strength 	RW	FF

Address	0x01			Hex
XTALDL	·	XTAL Drive Level		
Bit	Name	Description	Туре	Reset
7:0	xtal_drive_level[7:0]	Internal damping resistance of crystal circuit to limit external crystal's drive level uW. The value of damping resistor is determined by crystal's motion resistance of crystal's equivalent circuit. Drive level should be lower than crystal manufacturer's specification. Crystal's equivalent values should be requested to the manufacturer, (motion resistance and shunt capacitance). The selected resistors are connected to XOUT. Multiple bit combinations available by 7-bit control. Because they use parallel connections, 0xFF is the smallest resistance and 0x01 is the highest resistance. 8'b0000_0000: disable all resistors 8'b0000_0001: 312 Ohm resistor 8'b0000_0100: 42 Ohm resistor 8'b0000_1000: 42 Ohm resistor 8'b0001_0000: 21 Ohm resistor 8'b0001_0000: 10.5 Ohm resistor 8'b0010_0000: 0 Ohm connection 8'b1000_0000: not used	RW	04

Address	0x02			Hex
XTALLC		XTAL Load Capacitance		
Bit	Name	Description	Туре	Reset
7:0	xtal_load_cap[7:0]	Internal load capacitance of crystal circuit (0 pF to 21.75 pF with the resolution of 0.25 pF). XIN and XOUT have each capacitor connected to GND. Multiple bit combinations available between 8 capacitors. 8'b000_0000: disable all xtal load capacitors 8'b000_0001: enable capacitor 0.25 pF 8'b000_0010: enable capacitor 0.5 pF 8'b000_0100: enable capacitor 1 pF 8'b000_1000: enable capacitor 2 pF 8'b0001_0000: enable capacitor 2 pF 8'b001_0000: enable capacitor 4 pF 8'b0100_0000: enable capacitor 4 pF 8'b1000_0000: enable capacitor 8 pF	RW	40

Address	0x03			Bin
XTALNR		XTAL Normal Run		
Bit	Name	Description	Туре	Reset
7:1	Unused	Unused	R	1111111
0	xtal_normal_run	 When this bit is set high crystal oscillator circuit is running only if input_select[1:0] register at address 0x05 selects crystal mode (2'b10). This value is recommended because it provides best jitter performanceXO circuit is running only when it is needed. When this bit is set low the crystal oscillator will keep running even if crystal oscillator is not selected in input_select[1:0] register at address 0x05. This mode should only be used when fast switching between input references and crystal oscillator is required. 	RW	1

Address	0x05			Bin
INSEL	·	Input Select Register		
Bit	Name	Description	Туре	Reset
7:2	Unused	Unused	R	111111
1:0	input_select[1:0]	 Input reference clock selection. Proper external coupling and termination are required. 2'b00: differential input from IN0_p and IN0_n 2'b11: differential input from IN1_p and IN1_n 2'b10: fundamental XTAL mode with XIN and XOUT (Use internal crystal oscillator circuits) or XTAL overdrive mode (single-ended clock signal fed to XIN) 2'b11: XTAL bypass mode (single-ended clock signal with XIN and disabled internal crystal buffer circuit in the analog block) 	RW	00

\sub Microsemi.	
а <u> Міскосні</u> р company	

Address	0x06			Bin
OUTLOW		Output Drive Low		
Bit	Name	Description	Туре	Reset
7:1	Unused	Unused	R	1111111
0	output_drive_low	 Forces all disabled outputs to drive low in LVPECL mode. 1'b1: All differential outputs that are disabled in DRVTYPE registers (addresses 0x07, 0x08, 0x09 and 0x0A) will drive low in LVPECL mode. Hence, LVPECL biasing/termination resistors are required for proper functionality of this feature. 1'b0: This feature is ignored and all outputs that are disabled in DRVTYPE registers (addresses 0x07, 0x08, 0x09 and 0x0A) will stay in disabled (high-Z) mode. 	RW	0

Address 0x07				Bin
DRVTYPEA0		Output Type Select Bank-A 0		
Bit	Name	Туре	Reset	
7:6	7:6 driver_type[7:6] Output driver type of differential OUT3.		RW	11
		The same bit configuration with OUT0.		
5:4	driver_type[5:4]	Output driver type of differential OUT2.		11
		The same bit configuration with OUT0.		
3:2	driver_type[3:2]	Output driver type of differential OUT1.	RW	11
		The same bit configuration with OUT0.		
1:0	driver_type[1:0]	Output driver type of differential OUT0. 2'b00: LVPECL outputs 2'b01: LVDS outputs 2'b10: HCSL outputs 2'b11: outputs disabled (Disabled state is dependent on	RW	11
		"out_drive_low" control bit of register OUTLOW.")		

Address	0x08			Bin
DRVTYPEA1		Output Type Select Bank-A 1		
Bit	Name	Description	Туре	Reset
7:2	Unused	Unused	R	111111
1:0	driver_type[9:8]	Output driver type of differential OUT4.	RW	11
		The same bit configuration with OUT0.		

Address 0x09				Hex
DRVTYPEB)	Output Type Select Bank-B 0		
Bit Name		Description	Туре	Reset
7:6	6 driver_type[17:16] Output driver type of differential OUT8.		RW	11
		The same bit configuration with OUT0.		
5:4	driver_type[15:14] Output driver type of differential OUT7.		RW	11
		The same bit configuration with OUT0.		
3:2	driver_type[13:12]	Output driver type of differential OUT6.	RW	11
		The same bit configuration with OUT0.		
1:0	0 driver_type[11:10] Output driver type of differential OUT5.		RW	11
		The same bit configuration with OUT0.		

Address	0x0A			Bin
DRVTYPEB1		Output Type Select Bank-B 1		
Bit	Name	Description	Туре	Reset
7:2	Unused	Unused	R	111111
1:0	driver_type[19:18]	Output driver type of differential OUT9.	RW	11
		The same bit configuration with OUT0.		

Address	0x0B			Bin
CMOSDIV	•	CMOS Output Divider		
Bit	Name	Description	Туре	Reset
7:3	Unused	Unused	R	11111
2:0	cmos_div[2:0]	Integer divider from a selected input reference clock for OUT_LVCMOS (1 to 8). 3'b000: division ratio = 1 3'b001: division ratio = 2 3'b010: division ratio = 3 3'b011: division ratio = 4 3'b100: division ratio = 5 3'b101: division ratio = 6 3'b110: division ratio = 7 3'b111: division ratio = 8	RW	000

😳 Microsemi.
а 🐼 Міскоснір company

Address	0x0C			Bin
CMOSOUT	EN	LVCMOS Output Enable		
Bit Name		Description	Туре	Reset
7:1	Unused	Unused	R	111111
0	output_enable	Output enable of OUT_LVCMOS. Disabled state is dependent on "out_drive_low" control bit.	RW	0
		1'b1: Enable OUT_LVCMOS output		

Address	0x0D			Bin
CMOSDRVS	TR	CMOS Driver Strength		
Bit	Bit Name Description		Туре	Reset
7:1	Unused	Unused	R	1111111
0	driver_strength	OUT_LVCMOS output strength. 1'b0: low strength 1'b1: high strength	RW	0

Address	0x11			Bin
DEVID		Device Identification		
Bit Name		Description	Туре	Reset
7	Unused	Unused	R	0
6:5	Reserved	Leave as default		01
4:0	dev_id	Device ID 5'h02: ZL40230	RO	00010

AC and DC Electrical Characteristics

Absolute Maximum Ratings

Table 5 Absolute Maximum Ratings*

	Parameter	Sym.	Min.	Тур.	Max.	Units	Notes
1	Supply voltage (3.3V)	V _{DD} /V _{DDO}	-0.5		4.6	V	
2	Supply voltage (2.5V)	V_{DD} / V_{DDO}	-0.5		3.5	V	
3	Storage temperature	T _{ST}	-55		125	°C	

* Exceeding these values may cause permanent damage * Functional operation under these conditions is not implied

* Voltages are with respect to ground (GND) unless otherwise stated

Recommended Operating Conditions

Table 6 Recommended Operating Conditions*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Supply voltage 3.3V	$V_{DD} / V_{DDO} / V_{DD_LVCMOS}$	3.135	3.30	3.465	V	
2	Supply voltage 2.5V	$V_{DD} / V_{DDO} / V_{DD_LVCMOS}$	2.375	2.50	2.625	V	
3	Supply voltage 1.8V	V _{DD_LVCMOS}	1.6	1.8V	2	V	
4	Supply voltage 1.5V	V _{DD_LVCMOS}	1.35	1.5	1.65	V	
5	Operating temperature	T _A	-40	25	85	°C	
6	Input voltage	V _{DD-IN}	- 0.3		V _{DD} + 0.3	V	

* Voltages are with respect to ground (GND) unless otherwise stated

* The device core supports two power supply modes (3.3V and 2.5V)

Table 7 Current consumption

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
4	Care device current (all outputs and VTAL dischlord)	I _{s_3.3V}		163	197	mA	VDD= 3.3V+5%
1	Core device current (an outputs and XTAL disabled)	I _{s_2.5V}		153	187	mA	VDD = 2.5V+5%
_	Core device current (all outputs disabled) XTAL circuit	I _{DD_XTAL_3.3V}		128	154	mA	VDD= 3.3V+5%
2	XOUT	I _{DD_XTAL_2.5V}		124	150	mA	VDD= 2.5V+5%
2	Common output ourrent	IDD_CM_3.3V		13.44	15.05	mA	VDDO= 3.3V+5%
3	Common output current	I _{DD_CM_2.5V}		12.18	13.65	mA	VDDO= 2.5V+5%
	Dynamic LVCMOS current for high strength output	I _{DD_3.3V}		4.08	4.74	mA	VDDO= 3.3V+5%
4	Needs to be scaled for different frequencies by f/100MHz	I _{DD_2.5V}		2.90	3.29	mA	VDDO= 2.5V+5%
-	Dynamic LVCMOS current for low strength output	I _{DD_3.3V}		2.38	2.68	mA	VDDO= 3.3V+5%
Э	Needs to be scaled for different frequencies by f/100MHz	I _{DD_2.5V}		1.74	1.96	mA	VDDO= 2.5V+5%
c	Current dissinction per LV/DECL sutput	IDD_LVPECL_3.3V		19.36	23.26	mA	VDDO= 3.3V+5%
0		IDD_LVPECL_2.5V		19.38	22.17	mA	VDDO= 2.5V+5%
7	Current dissinction per LV/DC output	IDD_LVDSL_3.3V		6.73	8.00	mA	VDDO= 3.3V+5%
'	Current dissipation per LVDS output	IDD_LVDS_2.5V		6.87	7.83	mA	VDDO= 2.5V+5%
0	Current dissinction per HCCL sutput	IDD_HCSL_3.3V		16.43	19.87	mA	VDDO= 3.3V+5%
8	Current dissipation per HCSL output	IDD_HCSL_2.5V		17.14	19.18	mA	VDDO= 2.5V+5%

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	CMOS high-level input voltage for control inputs	V _{CIH}	1.05			V	
2	CMOS low-level input voltage for control inputs	V _{CIL}			0.45	V	
3	CMOS input leakage current for control inputs (includes current due to pull down resistors)		-25		50	μA	$V_I = V_{DD} \text{ or } 0 V$
4	Differential input common mode voltage for IN0_p/n and IN1_p/n	V _{CM}	1		2	V	
5	5 Differential input voltage difference for IN0_p/n and IN1_p/n f ≤ 1GHz **		0.15		1.3	V	
6	Differential input voltage difference for IN0_p/n and IN1_p/n for 1GHz < f \leq 1.6GHz **	VID	0.35		1.3	V	
7	7 Differential input leakage current for IN0_p/n and IN1_p/n (includes current due to pull-up and pull-down resistors)		-150		150	μA	$V_1 = 2V \text{ or } 0V$
8	Single ended input voltage for IN0_p and IN1_p	V _{SI}	-0.3		2.7	V	VDD = 3.3V or 2.5V
9	Single ended input common mode voltage (IN0_p/n and IN1_p/n)	Vsic	1		2	V	VDD = 3.3V or 2.5V
10	Single ended input voltage swing for IN0_p and IN1_p	V _{SID}	0.3		1.3	V	VDD = 3.3V or 2.5V
11	Input frequency (differential)	f _{IN}	0		1600	MHz	
12	Input frequency (LVCMOS)	f _{IN_CMOS}	0		250	MHz	
13	Input duty cycle	dc	35%		65%		
14	Input slew rate	slew		2		V/ns	
15	Input pull-up/ pull-down resistance	$R_{\text{PU}}/R_{\text{PD}}$		60kΩ			
16	Input pull-down resistance for INx_p	R _{PD}		30kΩ			
				-84			$f_{IN} = 100 \text{ MHz}$
17	Input multiplexer isolation IN0_p/n to IN1_p/n and vice versa	leo		-82		dBo	$f_{IN} = 200 \text{ MHz}$
17	Power on both inputs 0dBm, f _{OFFSET} > 50kHz	150		-71		UDC	$f_{IN} = 400 \text{ MHz}$
				-67			$f_{IN} = 800 \text{ MHz}$

* Values are over Recommended Operating Conditions * Values are over all two power supply modes ($V_{DD} = 3.3V$ and $V_{DD} = 2.5V$) * Input mux isolation is measured as amplitude of forest spur in dBc on the output clock phase noise plot **Input differential voltage is calculated as $V_{ID} = V_{IH}-V_{IL}$ where V_{IH} and V_{IL} are input voltage high and low respectively. It should not be confused with $V_{ID} = 2 * (V_{IH}-V_{IL})$ used in some datasheets. Please refer to Figure 41.

Figure 41. **Differential Input Voltage Levels**

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Mode of oscillation	mode	F	undament	al		
2	Frequency	f	8		160	MHz	
3	On chip load capacitance in SPI controlled mode	CL	0		21.75	pF	Programmable
4	On chip load capacitance in pin controlled mode			4		pF	Fixed
5	On chip series resistor in SPI controlled mode	Rs	0		312	Ω	Programmable
6	On chip series resistor in pin controlled mode			84		Ω	Fixed
7	On chip shunt resistor	R		500		kΩ	
8	Frequency in overdrive mode ⁽¹⁾	fov	0.1		250	MHz	Functional but may not meet AC parameters Minimum depends on AC coupling Capacitor (0.1uF assumed)
9	Frequency in bypass mode ⁽²⁾	f _{BP}	0		250	MHz	Functional but may not meet AC parameters

Table 9 Crystal Oscillator Characteristics*

* Values are over Recommended Operating Conditions

* Values are over all two power supply modes (V_{DD} = 3.3V and V_{DD} = 2.5V)

Maximum input level is 2V
 Maximum output level is VDD

Table 10 Power Supply Rejection Ratio for VDD = VDDO = 3.3V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
	PSRR for LVPECL output			-71.75			f _{IN} = 156.25 MHz
1		PSRRLVPECL		-84.45		dBc	$f_{IN} = 312.5 \text{ MHz}$
				-82.11			$f_{IN} = 625 \text{ MHz}$
	PSRR for LVDS output	PSRRLVDS		-95.16			f _{IN} = 156.25 MHz
2				-97.77		dBc	f _{IN} = 312.5 MHz
				-79.23			f _{IN} = 625 MHz
	PSRR for HCSL output			-77.15			f _{IN} = 100 MHz
3		PSRR _{HCSL}		-76.75		dBc	f _{IN} = 156.25 MHz
				-80.44			$f_{IN} = 312.5 \text{ MHz}$

* Values are over Recommended Operating Conditions
 * Noise injected to VDDO power supply with frequency 100 kHz and amplitude 100 mVpp
 * PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
				-73.68			f _{IN} = 156.25 MHz
1	PSRR for LVPECL output	PSRRLVPECL		-78.88		dBc	f _{IN} = 312.5 MHz
				-71.82			$f_{IN} = 625 \text{ MHz}$
	PSRR for LVDS output	PSRRLVDS		-90.04		dBc	f _{IN} = 156.25 MHz
2				-79.99			f _{IN} = 312.5 MHz
				-73.45			f _{IN} = 625 MHz
	PSRR for HCSL output			-92.16			$f_{IN} = 100 \text{ MHz}$
3		PSRR _{HCSL}		-74.08		dBc	f _{IN} = 156.25 MHz
				-91.88			f _{IN} = 312.5 MHz

Table 11 Power Supply Rejection Ratio for VDD = VDDO = 2.5V*

* Values are over Recommended Operating Conditions
 * Noise injected to VDDO power supply with frequency 100 kHz and amplitude 100 mVpp
 * PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage (1mA load)	V _{он}	VDDO-0.1			V	DC Measurement
2	Output low voltage (1mA load)	Vol			0.1	V	DC Measurement
3	Output High Current (Load adjusted to Vout = VDDO/2)	I _{ОН}		30		mA	DC Measurement
4	Output Low Current (Load adjusted to Vout = VDDO/2)	lol		34		mA	DC Measurement
5	Output impedance	Ro		15		Ω	DC Measurement
6	Rise time (20% to 80%)	tr		220	310	ps	
7	Fall time (20% to 80%)	t _f		320	365	ps	
8	Output frequency	Fo	0		250	MHz	
9	Input to output delay	t _{IOD}	1.07	1.28	2.07	ns	
10	Output enable time	t _{EN}			3	cycles	
11	Output disable time	T _{DIS}			3	cycles	
12	Additive RMS jitter in 1MHz to 5MHz band	Т _{ј_1М_5М}		46	80	fs	Input Clock 25MHz
13	Additive RMS jitter in 12kHz to 5MHz band	Т _{ј_12К_5М}		56	90	fs	Input Clock 25MHz
14	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		60	79	fs	Input Clock 125MHz
15	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		65	86	fs	Input Clock 125MHz
16	Additive RMS jitter in 1MHz to 20MHz band	Т _{ј_1М_20М}		61	94	fs	Input Clock 156.25MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		66	100	fs	Input Clock 156.25MHz
18				-165	-162	dBc/Hz	Input clock: 25 MHz
19	Noise floor	N _F		-160	-156	dBc/Hz	Input clock: 125 MHz
20				-158	-153	dBc/Hz	Input clock: 156.25 MHz

Table 12 LVCMOS Output Characteristics for VDDO = 3.3V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage (1mA load)	V _{OH}	VDDO-0.1			V	DC Measurement
2	Output low voltage (1mA load)	Vol			0.1	V	DC Measurement
3	Output High Current (Load adjusted to Vout = VDDO/2)	I _{ОН}		21		mA	DC Measurement
4	Output Low Current (Load adjusted to Vout = VDDO/2)	lol		25		mA	DC Measurement
5	Output impedance	Ro		15		Ω	DC Measurement
6	Rise time (20% to 80%)	tr		225	310	ps	
7	Fall time (20% to 80%)	tŗ		320	365	ps	
8	Output frequency	Fo	0		250	MHz	
9	Input to output delay	t _{IOD}	1.10	1.41	2.30	ns	
10	Output enable time	t _{EN}			3	cycles	
11	Output disable time	T _{DIS}			3	cycles	
12	Additive RMS jitter in 1MHz to 5MHz band	Т _{ј_1М_5М}		51	104	fs	Input Clock 25MHz
13	Additive RMS jitter in 12kHz to 5MHz band	T _{j_12k_5M}		62	111	fs	Input Clock 25MHz
14	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		64	81	fs	Input Clock 125MHz
15	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		70	88	fs	Input Clock 125MHz
16	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		62	94	fs	Input Clock 156.25MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		68	100	fs	Input Clock 156.25MHz
18				-164	-161	dBc/Hz	Input clock: 25 MHz
19	Noise floor	NF		-159	-155	dBc/Hz	Input clock: 125 MHz
20				-158	-153	dBc/Hz	Input clock: 156.25 MHz

Table	13 LVCMOS	Output	Characteristics	for	VDDO	= 2.5V*
Table		Output	onaracteristics	101	1000	- 2.3 4

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LVPECL_OH}	1.9	2.08	2.4	V	DC Measurement
2	Output low voltage	V _{LVPECL_OL}	1.2	1.36	1.7	V	DC Measurement
3	Output differential swing**	VLVPECL_SW	0.6	0.72	0.9	V	DC Measurement
4	Variation of V_{LVPECL_SW} for complementary output states	$\Delta V_{\text{LVPECL}_\text{SW}}$	0	0.02	0.07	V	
5	Common mode output	V _{CM}	1.6	1.72	2.1	V	
7	Output frequency when $V_{LVPECL_SW} \ge 0.6V$	F _{MAX_0.6VSW}			800	MHz	
8	Output frequency when $V_{LVPECL_SW} \ge 0.4V$	F _{MAX_0.4VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	tr, tr		110	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	t _{ооsк}			40	ps	
12	Device to device output skew	t _{DOOSK}			120	ps	
13	Input to output delay	t _{IOD}	0.73	0.87	1.1	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
				68	96	fs	Input clock: 100 MHz
16	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		50	64	fs	Input clock: 156.25MHz
				20	32	fs	Input clock: 625 MHz
				71	101	fs	Input clock: 100 MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		55	70	fs	Input clock: 156.25MHz
				25	39	fs	Input clock: 625 MHz
				-161	-159	dBc/Hz	Input clock: 100 MHz
18	Noise floor	NF		-160	-155	dBc/Hz	Input clock: 156.25 MHz
				-155	-151	dBc/Hz	Input clock: 625 MHz

Table 14 LVPECL	Output	Characteristics	for	VDDO	= 3.3V*

* Values are over Recommended Operating Conditions

**Output differential swing is calculated as $V_{SW} = V_{OH} V_{OL}$. It should not be confused with $V_{SW} = 2 * (V_{OH} - V_{OL})$ used in some datasheets. Please refer to Figure 42.

Figure 42. Differential Output Voltage Levels

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LVPECL_OH}	1.1	1.28	1.7	V	DC Measurement
2	Output low voltage	V _{LVPECL_OL}	0.4	0.57	0.9	V	DC Measurement
3	Output differential swing**	V _{LVPECL_SW}	0.6	0.71	0.9	V	DC Measurement
4	Variation of $V_{\mbox{LVPECL}_SW}$ for complementary output states	$\Delta V_{\text{LVPECL}_\text{SW}}$	0	0.02	0.05	V	
5	Common mode output	V _{CM}	0.8	0.92	1.2	V	
7	Output frequency when $V_{LVPECL_SW} \ge 0.6V$	F _{MAX_0.6VSW}			800	MHz	
8	Output frequency when $V_{LVPECL_SW} \ge 0.4V$	F _{MAX_0.4VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	t _r , t _f		120	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	t _{ооsк}			40	ps	
12	Device to device output skew	t _{DOOSK}			120	ps	
13	Input to output delay	t _{IOD}	0.75	0.87	1.1	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
				65	91	fs	Input clock: 100 MHz
16	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		50	64	fs	Input clock: 156.25MHz
				20	30	fs	Input clock: 625 MHz
				69	99	fs	Input clock: 100 MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		54	75	fs	Input clock: 156.25MHz
				26	41	fs	Input clock: 625 MHz
				-161	-159	dBc/Hz	Input clock: 100 MHz
18	Noise floor	NF		-160	-156	dBc/Hz	Input clock: 156.25 MHz
				-155	-151	dBc/Hz	Input clock: 625 MHz

Table 15 LVPECL Output Characteristics for VDDO = 2.5V*

* Values are over Recommended Operating Conditions **Output differential swing is calculated as $V_{SW} = V_{OH}-V_{OL}$ It should not be confused with $V_{SW} = 2 * (V_{OH}-V_{OL})$ used in some datasheets. Please refer to Figure 42.

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LVDS_OH}	1.3	1.39	1.47	V	DC Measurement
2	Output low voltage	V _{LVDS_OL}	1.0	1.07	1.15	V	DC Measurement
3	Output differential swing**	V _{LVDS_SW}	0.25	0.32	0.39	V	DC Measurement
4	Variation of $V_{\text{LVDS}_\text{SW}}$ for complementary output states	$\Delta V_{\text{LVDS}_\text{SW}}$	0	0.002	0.01	V	
5	Common mode output	V _{CM}	1.15	1.23	1.3	V	
6	Variation of $V_{\mbox{\tiny CM}}\xspace$ for complementary output states	ΔV_{CM}	0	0.001	0.01	V	
7	Output frequency when $V_{LVDS_SW} \ge 250 mV$	F _{MAX_0.25VSW}			800	MHz	
8	Output frequency when $V_{LVDS_SW} \ge 200 mV$	F _{MAX_0.2VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	t _r , t _f		110	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	t _{ооsк}			20	ps	
12	Device to device output skew	t _{DOOSK}			130	ps	
13	Input to output delay	t _{IOD}	0.76	0.86	1.1	ns	
14	Output Short Circuit Current Single Ended	ls	-24		24	mA	Single ended outputs shorted to GND
15	Output Short Circuit Current Differential	I _{SD}	-24		24	mA	Complementary outputs shorted
16	Output enable time	t _{EN}			3	cycles	
17	Output disable time	t _{DIS}			3	cycles	
				110	144	fs	Input clock: 100 MHz
18	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		63	81	fs	Input clock: 156.25MHz
				21	33	fs	Input clock: 625 MHz
				115	150	fs	Input clock: 100 MHz
19	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		73	102	fs	Input clock: 156.25MHz
				26	40	fs	Input clock: 625 MHz
				-158	-156	dBc/Hz	Input clock: 100 MHz
20	Noise floor	N _F		-158	-155	dBc/Hz	Input clock: 156.25 MHz
				-154	-151	dBc/Hz	Input clock: 625 MHz

* Values are over Recommended Operating Conditions **Output differential swing is calculated as V_{SW} = V_{OH}-V_{OL}. It should not be confused with V_{SW} = 2 * (V_{OH}-V_{OL}) used in some datasheets. Please refer to Figure 42.

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LVDS_OH}	1.3	1.4	1.5	V	DC Measurement
2	Output low voltage	V _{LVDS_OL}	0.97	1.05	1.13	V	DC Measurement
3	Output differential swing**	V _{LVDS_SW}	0.25	0.35	0.44	V	DC Measurement
4	Variation of $V_{\text{LVDS}_\text{SW}}$ for complementary output states	$\Delta V_{\text{LVDS}_\text{SW}}$	0	0.001	0.01	V	
5	Common mode output	V _{CM}	1.15	1.23	1.3	V	
6	Variation of $V_{\mbox{\tiny CM}}\mbox{for complementary output states}$	ΔV_{CM}	0	0.001	0.01	V	
7	Output frequency when $V_{LVDS_SW} \ge 250 mV$	F _{MAX_0.25VSW}			800	MHz	
8	Output frequency when $V_{LVDS_SW} \ge 200 mV$	F _{MAX_0.2VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	t _r , t _f		110	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	toosĸ			20	ps	
12	Device to device output skew	t _{DOOSK}			130	ps	
13	Input to output delay	t _{IOD}	0.78	0.86	1.12	ns	
14	Output Short Circuit Current Single Ended	ls	-24		24	mA	Single ended outputs shorted to GND
15	Output Short Circuit Current Differential	I _{SD}	-24		24	mA	Complementary outputs shorted
16	Output enable time	t _{EN}			3	cycles	
17	Output disable time	t _{DIS}			3	cycles	
				107	140	fs	Input clock: 100 MHz
18	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		62	77	fs	Input clock: 156.25MHz
				20	31	fs	Input clock: 625 MHz
				111	146	fs	Input clock: 100 MHz
19	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		66	83	fs	Input clock: 156.25MHz
				24	36	fs	Input clock: 625 MHz
				-158	-156	dBc/Hz	Input clock: 100 MHz
20	Noise floor	N _F		-159	-155	dBc/Hz	Input clock: 156.25 MHz
				-155	-151	dBc/Hz	Input clock: 625 MHz

Table 17 LVDS Outputs for VDDO = 2.5V*

* Values are over Recommended Operating Conditions **Output differential swing is calculated as V_{SW} = V_{OH}-V_{OL} It should not be confused with V_{SW} = 2 * (V_{OH}-V_{OL}) used in some datasheets. Please refer to Figure 42.

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{HCSL_OH}	0.6	0.85	1.1	V	DC Measurement
2	Output low voltage	V _{HCSL_OL}	-0.05	0	0.05	V	DC Measurement
3	Output differential swing**	V _{HCSL_SW}	0.6	0.85	1.1	V	DC Measurement
4	Variation of V_{HCSL_SW} for complementary output states	$\Delta V_{\text{HCSL}_{\text{SW}}}$	0	0.003	0.05	V	
5	Common mode output	V _{CM}	0.28	0.43	0.55	V	
6	Variation of $V_{\mbox{\tiny CM}}\mbox{for complementary output states}$	ΔV_{CM}	0	0.002	0.05	V	
7	Absolute Crossing Voltage	V _{CROSS}	0.320	0.384	0.447	V	
8	Total Variation of V _{CROSS}	ΔV_{CROSS}			0.127	V	
9	Output frequency	F _{MAX}	0		400	MHz	
10	Rise or fall time (20% to 80%)	t _r , t _f		143	309	ps	
11	Output to output skew	t _{ооsк}			21	ps	
12	Device to device output skew	t _{DOOSK}			129	ps	
13	Input to output delay	t _{IOD}	0.73	0.90	1.08	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
16	Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5MHz, CDR = 10MHz)	T _{jPCle_3.0}		20	40	fs	Input clock: 100MHz
17	Additive RMS litter in 1MHz to 20MHz band	Ti du cond		73	104	fs	Input clock: 100 MHz
17		1_1M_20M		53	69	fs	Input clock: 156.25MHz
18	Additive BMS litter in 12kHz to 20MHz band	T		77	112	fs	Input clock: 100 MHz
10		I_12k_20M		64	100	fs	Input clock: 156.25MHz
10	Noise floor	N		-161	-159	dBc/Hz	Input clock: 100 MHz
19		INF		-159	-155	dBc/Hz	Input clock: 156.25 MHz

Table 18 HCSL Outputs for VDDO = 3.3V*

* Values are over Recommended Operating Conditions **Output differential swing is calculated as V_{SW} = V_{OH}-V_{OL} It should not be confused with V_{SW} = 2 * (V_{OH}-V_{OL}) used in some datasheets. Please refer to Figure 42.

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{HCSL_OH}	0.6	0.83	1.1	V	DC Measurement
2	Output low voltage	V _{HCSL_OL}	-0.05	0	0.05	V	DC Measurement
3	Output differential swing**	V _{HCSL_SW}	0.5	0.83	1.1	V	DC Measurement
4	Variation of V_{HCSL_SW} for complementary output states	$\Delta V_{\text{HCSL}_{\text{SW}}}$	0	0.003	0.05	V	
5	Common mode output	V _{CM}	0.28	0.42	0.55	V	
6	Variation of $V_{\mbox{\tiny CM}}\mbox{for complementary output states}$	ΔV_{CM}	0	0.002	0.05	V	
7	Absolute Crossing Voltage	V _{CROSS}	0.260	0.316	0.372	V	
8	Total Variation of V _{CROSS}	ΔV_{CROSS}			0.108	V	
9	Output frequency	F _{MAX}	0		400	MHz	
10	Rise or fall time (20% to 80%)	t _r , t _f		125	162	ps	
11	Output to output skew	t _{ооsк}			21	ps	
12	Device to device output skew	t _{DOOSK}			129	ps	
13	Input to output delay	t _{IOD}	0.76	0.92	1.10	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
16	Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5MHz, CDR = 10MHz)	T _{jPCle_3.0}		20	40	fs	Input clock: 100MHz
17	Additive BMS litter in 1MHz to 20MHz hand	т		68	95	fs	Input clock: 100 MHz
17		1_1M_20M		52	66	fs	Input clock: 156.25MHz
10	Additive BMS litter in 12kHz to 20MHz band	т		72	102	fs	Input clock: 100 MHz
10		I_12k_20M		56	71	fs	Input clock: 156.25MHz
10	Noise floor	N		-161	-158	dBc/Hz	Input clock: 100 MHz
19	Noise floor			-160	-153	dBc/Hz	Input clock: 156.25 MHz

Table 19 HCSL Outputs for VDDO = 2.5V*

* Values are over Recommended Operating Conditions **Output differential swing is calculated as V_{SW} = V_{OH}-V_{OL} It should not be confused with V_{SW} = 2 * (V_{OH}-V_{OL}) used in some datasheets. Please refer to Figure 42.

	Characteristics	Min.	Тур.	Max.	Units	Notes
4	litter DMC in 12kHz to 5MHz band		103		fs	VDD = 3.3V, VDDO = 3.3V
'			117		fs	VDD = 2.5V; VDDO = 2.5V
			-75		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-132		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-150		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Naio 6 an		-162		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-166		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-166		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise noor		-70		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-102		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-130		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-149		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-161		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-165		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-165		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

Table 20 LVCMOS Output Phase Noise with 25 MHz XTAL*

* Values are over Recommended Operating Conditions

Table 21 LVPECL Output Phase Noise with 25 MHz XTAL*

	Characteristics	Min.	Тур.	Max.	Units	Notes
4	litter DMS in 12kHz to 5MHz band		265		fs	VDD = 3.3V, VDDO = 3.3V
'			213		fs	VDD = 2.5V; VDDO = 2.5V
			-75		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-133		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-152		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-157		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-158		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-157		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
2			-71		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-103		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-130		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-151		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-160		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

	Characteristics	Min.	Тур.	Max.	Units	Notes
4	litter DMC is 40kl is to 5Million hand		178		fs	VDD = 3.3V, VDDO = 3.3V
1			190		fs	VDD = 2.5V; VDDO = 2.5V
			-75		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-133		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-154		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-161		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-161		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-160		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
2			-68		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-103		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-130		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-152		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-161		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-160		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

Table 22 LVDS Output Phase Noise with 25 MHz XTAL

* Values are over Recommended Operating Conditions

Table 23 HCSL Output Phase Noise with 25 MHz XTAL

	Characteristics	Min.	Тур.	Max.	Units	Notes
1			269		fs	VDD = 3.3V, VDDO = 3.3V
1			228		fs	VDD = 2.5V; VDDO = 2.5V
			-76		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-133		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-152		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-157		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-157		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
2			-73		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-105		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-131		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-151		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 20MHz band		92		fs	VDD = 3.3V, VDDO = 3.3V
'			105		fs	VDD = 2.5V; VDDO = 2.5V
			-58		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-90		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-118		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-136		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-150		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-158		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-159		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise noor		-53		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-86		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-113		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-134		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-148		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-157		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

Table 24 LVCMOS Output Phase Noise with 125 MHz XTAL*

* Values are over Recommended Operating Conditions

Table 25 LVPECL Output Phase Noise with 125 MHz XTAL*

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 20MHz		76		fs	VDD = 3.3V, VDDO = 3.3V
	band		86		fs	VDD = 2.5V; VDDO = 2.5V
			-58		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-90		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-118		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-140		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-154		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-159		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise floor		-161		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise noor		-54		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-86		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-114		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-137		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-152		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-160		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 20MHz band		98		fs	VDD = 3.3V, VDDO = 3.3V
			100		fs	VDD = 2.5V; VDDO = 2.5V
			-57		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-90		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-118		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-140		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-152		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2	Notes (lass		-158		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise noor		-54		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-86		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-114		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-137		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-153		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-157		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

Table 26 LVDS Output Phase Noise with 125 MHz XTAL

* Values are over Recommended Operating Conditions

Table 27 HCSL Output Phase Noise with 125 MHz XTAL

	Characteristics	Min.	Тур.	Max.	Units	Notes	
1	Jitter RMS in 12kHz to 20MHz band		83		fs	VDD = 3.3V, VDDO = 3.3V	
			85		fs	VDD = 2.5V; VDDO = 2.5V	
			-58		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V	
			-90		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V	
			-118		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V	
			-140		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V	
			-152		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V	
			-158		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V	
2			-160		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V	
2	Noise noor		-54		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V	
			-86		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V	
			-114		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V	
			-137		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V	
			-153		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V	
			-158		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V	
					-159		dBc/Hz

	Characteristics	Min.	Тур.	Max.	Units	Notes
4	Jitter RMS in 12kHz to 20MHz band		79		fs	VDD = 3.3V, VDDO = 3.3V
1			88		fs	VDD = 2.5V; VDDO = 2.5V
			-53		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-81		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-111		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-135		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-149		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-159		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
2			-53		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-82		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-113		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-135		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-148		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-156		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

Table 28 LVCMOS Output Phase Noise with 156.25 MHz XTAL*

* Values are over Recommended Operating Conditions

Table 29 LVPECL Output Phase Noise with 156.25 MHz XTAL*

	Characteristics	Min.	Тур.	Max.	Units	Notes		
1	Jitter RMS in 12kHz to 20MHz band		61		fs	VDD = 3.3V, VDDO = 3.3V		
			68		fs	VDD = 2.5V; VDDO = 2.5V		
	Noise floor		-52		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V		
			-80		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V		
			-111		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V		
			-140		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V		
			-153		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V		
			-159		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V		
2			-161		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V		
2			-53		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V		
			-81		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V		
			-114		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V		
			-140		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V		
			-151		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V		
			-158		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V		
			-160		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V		

	Characteristics	Min.	Тур.	Max.	Units	Notes		
1	Jitter RMS in 12kHz to 20MHz band		79		fs	VDD = 3.3V, VDDO = 3.3V		
1			76		fs	VDD = 2.5V; VDDO = 2.5V		
			-52		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V		
			-81		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V		
			-111		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V		
			-138		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V		
	Noise floor		-148		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V		
			-157		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V		
2			-159		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V		
2			-52		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V		
			-82		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V		
			-113		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V		
			-140		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V		
			-151		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V		
			-157		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V		
			-159		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V		

Table 30 LVDS Output Phase Noise with 156.25 MHz XTAL

* Values are over Recommended Operating Conditions

Table 31 HCSL Output Phase Noise with 156.25 MHz XTAL

	Characteristics	Min.	Тур.	Max.	Units	Notes
4	Jitter RMS in 12kHz to 20MHz band		72		fs	VDD = 3.3V, VDDO = 3.3V
I			72		fs	VDD = 2.5V; VDDO = 2.5V
			-53		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-86		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-114		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-139		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-148		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-160		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
			-53		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-86		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-115		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-140		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-151		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-157		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-160		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes	
1	sck period	tcyc	124			ns		
2	sck pulse width low	tclkl	62			ns	See	
3	sck pulse width high	tclkh	62			ns		
4	si setup (write) from sck rising edge	trxs	10			ns	Figure 43&	
5	si hold (write) from sck falling edge	trxh	10			ns	⊢igure 44	
6	so delay (read) from sck falling edge	txd			25	ns		
7	cs_b to output high impedance	tohz			60	ns		
8	cs_b setup from sck falling edge (LSB first)	tcssi	20			ns	Soo Figuro 42	
9	cs_b hold from sck falling edge (LSB first)	tcshi	10			ns	See Figure 43	
10	cs_b setup from sck falling edge (MSB first)	tcssm	20			ns	Soo Figuro 44	
11	cs_b hold from sck falling edge (MSB first)	tcshm	10			ns	See Figure 44	

Table 32 AC Electrical Characteristics* - SPI (Serial Peripheral Interface) Timing

* Values are over Recommended Operating Conditions

* For LSB first mode timing diagram, refer to Figure 43

* For MSB first mode timing diagram, refer to Figure 44

* Values shown are proposed for the data sheet, these values are to be confirmed

Figure 43. SPI (Serial Peripheral Interface) Timing - LSB First Mode

Figure 44. SPI (Serial Peripheral Interface) Timing - MSB First Mode

Table 33 7x7mm QFN Package Thermal Properties

Parameter	Symbol	Condition	Value	Units	
Maximum Ambient Temperature	TA		85	°C	
Maximum Junction Temperature	TJMAX		125	°C	
		still air	21.1		
Junction to Ambient Thermal Resistance ⁽¹⁾	θ _{JA}	1m/s airflow	16.9	°C/W	
		2.5m/s airflow	15.0		
Junction to Board Thermal Resistance	θјв		6.9	°C/W	
Junction to Case Thermal Resistance	θ _{JC}		12.8	°C/W	
Junction to Pad Thermal Resistance ⁽²⁾	θյρ	Still air	3.9	°C/W	
Junction to Top-Center Thermal Characterization Parameter	Ψ_{JT}	Still air	0.2	°C/W	

(1) Theta-JA (θ_{JA}) is the thermal resistance from junction to ambient when the package is mounted on an 4-layer JEDEC standard test board and dissipating maximum power

(2) Theta-JP (θ_{JP}) is the thermal resistance from junction to the center exposed pad on the bottom of the package)

Change History

June 2017 was the first release of the document.

July 2017 release changes:

• Modified power calculation in the Power Consumption section.

August 2017 release changes:

- Modified "Input driven by HCSL output" figure.
- Modified additive jitter for 156.25MHz input clock.
- Added Figure 41 and Figure 42.

October 2018 release changes:

- Added note in pinout to tie XIN pin when crystal circuit is not used
- Removed Figures 13, 15 and 16 due to inaccuracy
- Fixed typo in Table 3

Package Outline

a MICROCHIP company

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2018 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation, a wholly owned subsidiary Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below :

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF PI49FCT20802QE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP ADCLK907BCPZ-R2 ADCLK907BCPZ-RP ADCLK914BCPZ-R2