DALI click[™]

1. Introduction

DALI ClickTM is an add-on board in **mikroBUS**TM form factor. It's a compact and easy solution for adding Digital Addressable Lighting Interface (DALI) to your design. It features two optocouplers, push button and screw terminals. DALI ClickTM communicates with target board microcontroller via four **mikroBUS**TM lines (RST, CS, PWM and INT). The board is designed to use 3.3V and 5V power supply. LED diode indicates the presence of power supply.

2. Soldering the headers

Before using your click boardTM, make sure to solder 1x8 male headers to both left and right side of the board. Two 1x8 male headers are included with the board in the package.

2

1

Turn the board upside down so that bottom side is facing you upwards. Place shorter parts of the header pins in both soldering pad locations.

Turn the board upward again. Make sure to align the headers so that they are perpendicular to the board, then solder the pins carefully.

4. What is DALI?

DALI (Digital Addressable Lighting Interface) is international standard for network based systems that controls lighting in buildings. Data between MCU and devices is transferred over two-wire differential bus by means of asynchronous, half-duplex, serial protocol. It is possible to address up to 64 devices in DALI stand alone systems and more than 64 devices as DALI subsystem (gateways)

3. Plugging the board in

Once you have soldered the headers your board is ready to be placed into desired mikroBUS[™] socket. Make sure to align the cut in the lower-right part of the board with the markings on the silkscreen at the mikroBUS[™] socket. If all of the pins are aligned correctly, push the board all the way into the socket.

5. DALI Click[™] Board Schematic

Target board microcontroller can receive a signal from DALI peripherals via interrupt pin

signal from DALI peripherals via interrupt pin (INT) or input capture pin (PWM). Jumper **J1** enables you to choose between these two ways. **J1** is soldered in the INT position by default. There is one zero-ohm SMD jumper **J2** which is used to select between 3.3V or 5V power supply. Jumper **J2** is soldered in the 3.3V position by default.

7. Code Examples

6. SMD Jumpers

Once you have done all the necessary preparations, it's time to get your click board up and running. We have provided the examples for mikroC, mikroBasic and mikroPascal compilers on our **Libstock** website. Just download them and you are ready to start.

8. Support

MikroElektronika offers **Free Tech Support** (www.mikroe.com/esupport) until the end of product lifetime, so if something goes wrong, we are ready and willing to help!

MikroElektronika assumes no responsibility or liability for any errors or inaccuracies that may appear in the present document. Specification and information contained in the present schematic are subject to change at any time without notice. Copyright © 2012 MikroElektronika. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Lighting Development Tools category:

Click to view products by MikroElektronika manufacturer:

Other Similar products are found below :

MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX6956EVKIT+ OM13321,598 DC986A DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT# MAX21610EVKIT# MAX6951EVKIT MAX20090BEVKIT# MAX20092EVSYS# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT TLC59116EVM-390 1216.1013 TPS61176EVM-566 TPS61197EVM TPS92001EVM-628 1270 1271.2004 1272.1030 1273.1010 1278.1010 1279.1002 1279.1001 1282.1000 1293.1900 1293.1800 1293.1700 1293.1500 1293.1100 1282.1400