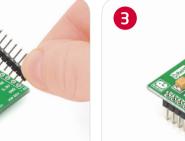


Proximity click[™]

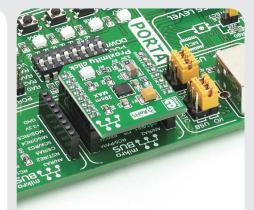
1. Introduction


Proximity click[™] is an accessory board in **mikroBUS[™]** form factor. It's a compact and easy solution for adding proximity sensor to your design. It features **VCNL4010** proximity and ambient light sensor. Proximity click[™] communicates with the target board microcontroller via **mikroBUS[™]** I²C (SDA, SCL) and INT lines. The board is designed to use 3.3V power supply and 3.3V or 5V I/O voltage levels. LED diode (GREEN) indicates the presence of power supply.

2. Soldering the headers

Before using your click[™] board, make sure to solder 1x8 male headers to both left and right side of the board. Two 1x8 male headers are included with the board in the package.

2

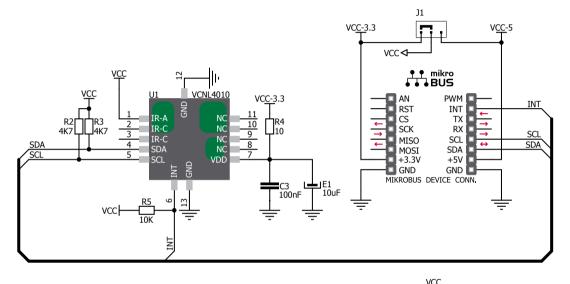


Turn the board upside down so that bottom side is facing you upwards. Place shorter pins of the header into the appropriate soldering pads.

Turn the board upward again. Make sure to align the headers so that they are perpendicular to the board, then solder the pins carefully.

4. Essential features

Proximity click[™] with it's **VCNL4010** IC combines an infrared emitter and PIN photodiode for proximity measurement with a range of up to 20cm. It can also be used as ambient light sensor. The **VCNL4010** has a 16bit resolution which ensures excellent cross talk immunity. All these features make this board ideal for consumer and industrial applications, mobile phones, digital camera, tablet PC application and many more.



3. Plugging the board in

Once you have soldered the headers your board is ready to be placed into desired mikroBUS[™] socket. Make sure to align the cut in the lower-right part of the board with the markings on the silkscreen at the mikroBUS[™] socket. If all of the pins are aligned correctly, push the board all the way into the socket.

5. Proximity click[™] Board Schematic

6. SMD Jumpers

There is one zero-ohm SMD jumper **J1** used to select whether 3.3V or 5V I/O voltage level is used. Jumper **J1** is soldered in 3.3V position by default.

7. Code Examples

Once you have done all the necessary preparations, it's time to get your click^m board up and running. We have provided the examples for mikroC^m, mikroBasic^m and mikroPascal^m compilers on our **Libstock** website. Just download them and you are ready to start.

8. Support

MikroElektronika offers **Free Tech Support** (www.mikroe.com/esupport) until the end of product lifetime, so if something goes wrong, we are ready and willing to help!

MikroElektronika assumes no responsibility or liability for any errors or inaccuracies that may appear in the present document. Specification and information contained in the present schematic are subject to change at any time without notice. Copyright © 2013 MikroElektronika. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Optical Sensor Development Tools category:

Click to view products by MikroElektronika manufacturer:

Other Similar products are found below :

416015300-3 ISL29102IROZ-EVALZ TSL2581CS-DB TMD3700-DB NANOUSB2.2 MARS1-MAX9295A-GEVK MARS1-MAX9296B-GEVB ISL29112IROZ-EVALZ TCS3430-DB AR0130CSSM00SPCAH-GEVB AR0330CM1C00SHAAH3-GEVB EVALZ-ADPD2212 TMD2772EVM TMG3993EVM MIKROE-2103 TSL2672EVM 1384 SEN0043 SEN0162 TMD2771EVM TMD3782EVM TSL4531EVM 1918 AS7225 DEMO KIT SEN0097 SEN0228 AR0134CSSC00SUEAH3-GEVB AP0100AT2L00XUGAH3-GEVB 725-28915 SEN-14347 PIEZO-01 MIKROE-3330 MT9M114EBLSTCZD3-GEVK LF-9MT024NV-EVN SI1102EK 1334 1356 1777 1980 1981 2748 2899 3779 4162 4698 ALS-GEVB AS7263 DEMO KIT V3.0 AS7261 DEMO KIT V3.0 AS7264N DEMO KIT AS7265x Demo Kit Housing