

LIN HALL click'

1. Introduction

LIN HALL click m m is a simple solution for adding a linear Hall sensor to your design. It carries an MLX90242 linear Hall sensor IC (with built-in active error correction circuitry) and an MCP3201 12-bit ADC. LIN HALL click ${ }^{\text {m }}$ communicates with the target board through the mikroBUS ${ }^{m}$ SPI lines (CS, SCK, MISO). The board is designed to use either a 3.3V or 5 V power supply.

2. Soldering the headers

Before using your click ${ }^{m}$ board, make sure to solder 1x8 male headers to both left and right side of the board. Two 1×8 male headers are included with the board in the package.

(2)

Turn the board upside down so that the bottom side is facing you upwards. Place shorter pins of the header into the appropriate soldering pads.

Turn the board upward again. Make sure to align the headers so that they are perpendicular to the board, then solder the pins carefully.

3. Plugging the board in

Once you have soldered the headers your board is ready to be placed into the desired mikroBUS ${ }^{m}$ socket. Make sure to align the cut in the lower-right part of the board with
the markings on the silkscreen at the mikroBUS ${ }^{m}$ socket. If all the pins are aligned correctly, push the board all the way into the socket.

4. Essential features

LIN HALL click ${ }^{\text {m' }}$, with its linear Hall sensor, outputs a signal that is proportional to the flux density of a magnetic field. The output signal will increase when a north magnetic field is applied, while a south magnetic field will cause it to decrease. The ratiometric output can be used to measure the strength of different magnets, or to measure the distance between the sensor and a magnet (which can be used for linear or rotary position sensing by placing magnets on the target object).

5. LIN HALL click ${ }^{\text {m }}$ board schematic

6. SMD jumpers

To switch between 3.3 V and 5 V power supplies, use the on-board zero-ohm SMD jumpers. By default, the two jumpers are soldered in the 3.3 V position.

7. Code examples

Once you have done all the necessary preparations, it's time to get your click ${ }^{\text {mT}}$ board up and running. We have provided examples for mikroC ${ }^{\text {m }}$, mikroBasic ${ }^{\text {m }}$ and mikroPascal ${ }^{\text {m }}$ compilers on our Libstock website. Just download them and you are ready to start.

8. Support

MikroElektronika offers free tech support (www.mikroe.com/support) until the end of the product's lifetime, so if something goes wrong, we're ready and willing to help!

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Magnetic Sensor Development Tools category:
Click to view products by MikroElektronika manufacturer:
Other Similar products are found below :
AS5045 DB V2 AS5134 AB MMC5633NJL-B ROTATEKNOBANGLE2GOTOBO1 MIKROE-1647 MIKROE-1646 EVAL-CN0332-
PMDZ AS5510-SO_EK_AB AS5510-WL_EK_DB ADA4571R-EBZ AS5170A-SO_EK_AB 4366 AS5013-QF_EK_AB AS5040 AB
AS5040 DB V2 AS5045 AB AS5047D-TS_EK_AB AS5048-TS_EK_DB AS5050A-QF_EK_AB AS5132 AB AS5132 DB AS5132-PB
AS5140 DB AS5145B-EK-AB-STM1.0 AS5147P-TS_EK_AB AS5162-EK-AB AS5172B-TS_EK_AB AS5247-MF_EK_SB AS5247U-
TQ_EK_AB AS5247U-TQ_EK_SB AS5262-MF_EK_AB AS5306-TS_EK_AB AS5311-TS_EK_AB AS5510-SOIC8-AB AS5600-
SO_EK_AB AS5600-SO_EK_ST AS5601-SO_EK_AB AS5601-SO_EK_ST AS5601-SO_RD_ST AS5X47U-TS_EK_AB SD4Y-EK-XX
USB I\&P BOX EVAL-CN0323-SDPZ EVAL-CN0368-SDPZ DFR0033 OUTOFSHAFTFOR3D2GOTOBO1
S2GO3DSENSETLV493DTOBO1 S2GOCURSENSETLI4970TOBO1 TLE5012BE5000MS2GOTOBO1 TLE5012BE9000MS2GOTOBO1

