I2C isolator click'

1. Introduction

I2C Isolator click ${ }^{\text {me }}$ carries ISO1540, a lowpower, bidirectional isolator compatible with $I^{2} \mathrm{C}$ interfaces. On the board, the Texas Instruments chip is connected to two sets of $I^{2} \mathrm{C}$ pins, one on the mikroBUS ${ }^{\text {ma }}$ connector [SDA, SCL], the other on the upper edge of the board [SCL2, SDL2]. ISO1540 uses a silicon dioxide barrier that separates the logic input and output buffers. The board can use either 3.3 V or 5 V power supplies

2. Soldering the headers

Before using your click ${ }^{\text {ma }}$ board, make sure to solder 1×8 male headers to both left and right side of the board. Two 1×8 male headers are included with the board in the package.

Turn the board upside down so that the bottom side is facing you upwards. Place shorter pins of the header into the appropriate soldering pads.

Turn the board upward again. Make sure to align the headers so that they are perpendicular to the board, then solder the pins carefully.

3. Plugging the board in

Once you have soldered the headers your board is ready to be placed into the desired mikroBUS ${ }^{\text {TM }}$ socket. Make sure to align the cut in the lower-right part of the board with the markings on the silkscreen at the mikroBUS ${ }^{T m}$ socket. If all the pins are aligned correctly, push the board all the way into the socket.

Bidirectional isolators based on TI's Capacitive Isolation technology have many advantages over opto-couplers [performance, size, power consumption etc.]. When used together with isolated power supplies, they block high voltages, isolate grounds, and prevent interference from from noise currents. Since ISO1540 provides two isolated bidirectional channels for clock and data lines, it's suitable for use in applications that have multiple masters.

5. Schematic

8. Code examples

Once you have done all the necessary preparations, it's time to get your click ${ }^{\text {TM }}$ board up and running. We have provided examples for mikroC ${ }^{\text {TM }}$, mikroBasic ${ }^{\text {Tm }}$ and mikroPascal ${ }^{\text {TM }}$ compilers on our Libstock website. Just download them and you are ready to start.

9. Support

MikroElektronika offers free tech support [www.mikroe.com/support] until the end of the product's lifetime, so if something goes wrong, we're ready and willing to help!

夏
 MikroElektronika

10. Disclaimer

MikroElektronika assumes no responsibility or liability for any errors or inaccuracies that may appear in the present document. Specification and information contained in the present schematic are subject to change at any time without notice.

Copyright © 2015 MikroElektronika. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface Development Tools category:
Click to view products by MikroElektronika manufacturer:
Other Similar products are found below :
ADP5585CP-EVALZ CHA2066-99F AS8650-DB MLX80104 TESTINTERFACE 416100120-3 XR18910ILEVB XR21B1421IL28-0AEVB TW-DONGLE-USB EVAL-ADM2491EEBZ MAXREFDES23DB\# MAX13235EEVKIT DFR0257 XR22404CG28EVB ZLR964122L ZLR88822L EVK-U23-01S EVK-W262U-00 DC327A PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177\# EVAL-ADM2567EEBZ ZSSC3240KIT MAX9121EVKIT PIM532 ZSC31010KITV2P1 UMFT4233HPEV LVDS-18BEVK XR20M1170G16-0A-EB XR20M1170G16-0B-EB XR20M1170G24-0B-EB XR20M1172G28-0A-EB XR20M1172G28-0B-EB SI871XSOIC8-KIT $1764 \underline{1833} \underline{1862}$ EVB-USB82514 ATA6628-EK ATA6631-EK EVAL-CN0313-SDPZ 2264 MCP23X17EV PS081-EVA-HR MODULE 237 SMA2RJ45EVK/NOPB FR12-0002

