

HAPTIC click

1. Introduction

Haptic click carries DRV2605, a Haptic Driver for ERM and LRA vibration motors [acronyms stand for Eccentric Rotating Mass and Linear Resonant Actuator, respectively]. The board also carries screw terminals for connecting said motors, as well as an audio interface [3.5 mm jack]. Haptic click communicates with the target MCU through mikroBUSTM I2C [SCL, SDA), EN [in place of CS] and PWM pins. The board is designed to use either a 3.3 V or 5 V power supply.

2. Soldering the headers

Before using your click board ${ }^{\text {m" }}$, make sure to solder 1×8 male headers to both left and right side of the board. Two 1×8 male headers are included with the board in the package.

Turn the board upside down so that the bottom side is facing you upwards Place shorter pins of the header into the appropriate soldering pads.

Turn the board upward again. Make sure to align the headers so that they are perpendicular to the board, then solder the pins carefully.

4. Essential features

The DRV2605 IC integrates an extensive library with over 100 haptic effects. These include audio-to-vibe features, which generate vibrations from the lower frequency range of the audio input [licensed version of TouchSense ${ }^{\text {® }} 2200$ effects from Immersion ${ }^{\text {™ }}$]. A real-time playback mode allows the host MCU to bypass the effects and send waveforms to the motor directly through I2C pins. This board is ideal for enhancing User Interface designs with the addition of tactile feedback. Applications include touch-enabled devices, remote controls as well as wearables.

3. Plugging the board in

Once you have soldered the headers your board is ready to be placed into the desired mikroBUS ${ }^{T M}$ socket. Make sure to align the cut in the lower-right part of the board with the markings on the silkscreen at the mikroBUS ${ }^{m}$ socket. If all the pins are aligned correctly, push the board all the way into the socket.

5. Schematic

8. Code examples

Once you have done all the necessary preparations, it's time to get your click board ${ }^{\text {TM }}$ up and running. We have provided examples for mikroC ${ }^{T M}$, mikroBasic ${ }^{T M}$ and mikroPascal ${ }^{T M}$ compilers on our Libstock website. Just download them and you are ready to start.

9. Support

MikroElektronika offers free tech support [www.mikroe.com/support] until the end of the product's lifetime, so if something goes wrong, we're ready and willing to help!

i
 MikroEpktronika

10. Disclaimer

MikroElektronika assumes no responsibility or liability for any errors or inaccuracies that may appear in the present document. Specification and information contained in the present schematic are subject to change at any time without notice.

Copyright © 2015 MikroElektronika. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by MikroElektronika manufacturer:

Other Similar products are found below :
EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV 124352-HMC860LP3E DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8EVALZ ADP130-1.8-EVALZ ADP1740-1.5-EVALZ ADP1870-0.3-EVALZ ADP1874-0.3-EVALZ ADP199CB-EVALZ ADP2102-1.25EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ AS3606-DB BQ25010EVM BQ3055EVM ISLUSBI2CKIT1Z LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ ADP122UJZREDYKIT ADP166Z-REDYKIT ADP170-1.8-EVALZ ADP171-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0-EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP5020CP-EVALZ CC-ACC-DBMX-51 ATPL230A-EK MIC23250S4YMT EV MIC26603YJL EV MIC33050-SYHL EV TPS60100EVM-131 TPS65010EVM-230 TPS71933-28EVM-213 TPS72728YFFEVM-407 TPS79318YEQEVM UCC28810EVM-002 XILINXPWR-083 LMR22007YMINI-EVM LP38501ATJ-EV

