## 5V-3.3U VOLTAGE TRANSLATOR"

## Manual

All Mikroelektronika's development systems feature a large number of peripheral modules expanding microcontroller's range of application and making the process of program testing easier. In addition to these modules, it is also possible to use numerous additional modules linked to the development system through the I/O port connectors. Some of these additional modules can operate as stand-alone devices without being connected to the microcontroller.


## 5V-3.3V VOLTAGE TRANSLATOR Additional Board

The 5V-3.3V VOLTAGE TRANSLATOR additional board is used to adjust voltage levels between a 5 V development system and a 3.3 V device.

How to connect the board?
The additional board is connected to a development system via two $2 \times 5$ connectors and a flat cable with appropriate IDC10 connectors, Figure 1. A $2 \times 5$ connector CN1 is used for connection with the development system, whereas a $2 \times 5$ connector CN2 is used for connection with a device.


Figure 1: 5V-3.3V VOLTAGE TRANSLATOR additional board


Figure 2: Plugging IDC10 connector into a development system


Figure 3: Flat cable with IDC10 connectors

How does the board operate?
The additional board performs voltage adjustment by using two voltage translators 74LVCC3245. The board comes with jumpers placed in the position indicating that a 5 V voltage signal is adjusted to a 3.3 V voltage signal. If necessary, the process of voltage adjustment may be performed in the oposite direction, i.e. a $3.3 . \mathrm{V}$ voltage level may be adjusted to a 5 V voltage level. In order to set the voltage adjustment direction to be different from default, it is necessary to place jumpers as in Figure 5.

The additional board utilizes two power supply voltages for its operation. The 5 V power supply voltage is supplied from the development system, whereas the 3.3 V power supply voltage is supplied from the device connected to the development system. If this device is not capable of providing the 3.3 V power supply voltage, it may be provided by reducing the 5 V power supply voltage supplied from the development system. This is performed by using a voltage regulator provided on the additional board. In order to enable this voltage regulator, it is necessary to have jumper J17 placed on the board, Figure 7.

MikroElektronika


Figure 4: Jumpers DIR1 and DIR2 in the position for 5 V to 3.3 V voltage level adjustment


Figure 6: Jumpers DIR1 and DIR2 in the position for bidirectional transfer


Figure 7: Jumper J17 placed on the board

In case it is necessary to send and receive different voltage signals at the same time, jumpers belonging to jumper groups DIR1 and DIR2 should be placed in the appropriate positions. Refer to Figure 6. Jumpers HVS1, HVS4 and HVS5 belonging to jumper group DIR1 as well as jumpers LVS0, LVS1, LVS4 and LVS5 belonging to jumper group DIR2 are placed so as to enable 5 V to 3.3 V voltage signal adjustment. Likewise, jumpers HVS2, HVS3, HVS6 and HVS7 belonging to jumper group DIR1 as well as jumpers LVS2, LVS3, LVS6 and LVS7 belonging to jumper group DIR2 are placed so as to enable 3.3 V to 5 V voltage signal adjustment.


Figure 8: Additional board and development system connection schematic


Figure 9: Additional board connection schematic

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by MikroElektronika manufacturer:

Other Similar products are found below :
EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.8EVALZ ADP1740-1.5-EVALZ ADP1870-0.3-EVALZ ADP1874-0.3-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP21021.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ AS3606-DB BQ25010EVM BQ3055EVM ISLUSBI2CKIT1Z LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ ADP122UJZ-REDYKIT ADP166Z-REDYKIT ADP170-1.8-EVALZ ADP171-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP5020CP-EVALZ CC-ACC-DBMX-51 ATPL230A-EK MIC23250-S4YMT EV MIC26603YJL EV MIC33050-SYHL EV TPS60100EVM-131 TPS65010EVM-230 TPS71933-28EVM-213 TPS72728YFFEVM-407 TPS79318YEQEVM UCC28810EVM-002 XILINXPWR-083 LMR22007YMINI-EVM LP38501ATJ-EV LP38511TJ-ADJEV

