MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918

Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

www.mikroe.com

Stepper 9 Click

PID: MIKROE-5263

Stepper 9 Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S581FNG, a two-phase bipolar stepping motor driver from Toshiba Semiconductor. Fabricated with the BiCD process, it supports a PWM constant-current control drive and steps resolution from full to 1/32 for less motor noise and smoother control. It has a wide operating voltage range of 8.2V to 44V with a maximum output current capacity of 2A, decay modes selection function, protection, and several anomaly detection indicators. This Click board[™] makes the perfect solution for small stepping motors in various applications such as consumer electronics and industrial equipment.

Stepper 9 Click is supported by a mikroSDK compliant library, which includes functions that simplify software development. This <u>Click board™</u> comes as a fully tested product, ready to be used on a system equipped with the mikroBUS™ socket.

How does it work?

Stepper 9 Click is based on the TB67S581FNG, a two-phase bipolar stepping motor driver designed to control one bipolar stepping motor from Toshiba Semiconductor. The TB67S581FNG supports a PWM constant-current control drive and incorporates low onresistance DMOS FETs, delivering a 2A maximum current. It can also provide a motor output voltage rating of around 40V and has integrated protection mechanisms such as over-current, over-temperature, and under-voltage lockout for error detection (red LO LED indicator). It supports full-step to 1/32 steps resolution for less motor noise and smoother control, with a built-in regulator that allows the motor to be driven by a single power supply.

Mikroe produces entire development toolchains for all major microcontroller architectures. Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918

Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

The current value in the PWM constant-current mode is set by the reference voltage obtained by the MCP1501, a high-precision voltage regulator. Also, the current threshold point of the TB67S581FNG, alongside MCP1501, can be set manually using an onboard trimmer labeled VREF. The TB67S581FNG supports various step resolution configurations through its control signals. These signals, like step resolution settings, sleep mode, or LO/MO indicators, are controlled through the PCA9538A port expander, which establishes communication with the MCU via the I2C serial interface. In addition to this digital way of setting, these functions can also be selected manually via a multifunctional switch by selecting a particular switch (1,2,3 - Step Resolution Setting; 4 - Decay Mode Control). The PCA9538A also allows choosing the least significant bit (LSB) of its I2C slave address by positioning SMD jumpers labeled as ADDR SEL to an appropriate position marked as 0 and 1, alongside its interrupt feature routed to the INT pin of the mikroBUS™ socket.

The CLK clock signal, routed to the default PWM position on the mikroBUS™ socket, shifts the current step and electrical angle of the motor with its every up-edge, while the Enable pin, labeled as EN and routed to the default CS position, controls the state of the output A and B stepping motor drive channels. Besides, all circuits can be stopped using the Sleep function and thus enable power saving mode. A simple DIR pin routed to the default AN position on the mikroBUS™ socket allows MCU to manage the direction of the stepper motor (clockwise or counterclockwise) while the RST pin initializes an electrical angle in the internal counter to set an initial position. Achieving an initial electrical angle position is indicated via onboard orange LED labeled as MO.

The Stepper 9 Click supports an external power supply for the TB67S581FNG, which can be connected to the input terminal labeled as VM and should be within the range of 8.2V to 44V, while the stepper motor coils can be connected to the terminals labeled as B+, B-, A-, and A+.

This Click board $^{\text{TM}}$ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board $^{\text{TM}}$ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

Specifications

Туре	Stepper
1 ' '	Can be used for small stepping motors in various applications such as consumer

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918
Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

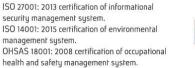
	electronics and industrial equipment		
On-board modules	TB67S581FNG - two-phase bipolar stepping motor driver from Toshiba Semiconductor		
Key Features	Low power consumption, capable of controlling one bipolar stepping motor, PWM controlled constant-current drive, operational in full, half quarter, 1/8, 1/16, and 1/32 step resolutions, selectable decay mode, anomaly detection functions, and more		
Interface	GPIO,I2C		
Feature	No ClickID		
Compatibility	mikroBUS™		
Click board size	L (57.15 x 25.4 mm)		
Input Voltage	3.3V or 5V		

Pinout diagram

This table shows how the pinout on Stepper 9 Click corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).

Notes	Pin	mikro™ BUS				Pin	Notes	
Rotation Direction	DIR	1	AN	PWM	16	CLK	Step Clock	
Electrical Angle Intilizing	RST	2	RST	INT	15	INT	Interrupt	
Enable	EN	3	CS	RX	14	NC		
	NC	4	SCK	TX	13	NC		
	NC	5	MISO	SCL	12	SCL	I2C Clock	
	NC	6	MOSI	SDA	11	SDA	I2C Data	
Power Supply	3.3V	7	3.3V	5V	10	5V	Power Supply	
Ground	GND	8	GND	GND	9	GND	Ground	

Onboard settings and indicators


Label	Name	Default	Description		
LD1	PWR	-	Power LED Indicator		
LD2	МО	-	Electric Angle Initial		
			Position LED Indicator		
LD3	LO	-	Error LED Indicator		
JP1	VCC SEL	Left	Logic Level Voltage		
			Selection 3V3/5V: Left		
			position 3V3, Right		
			position 5V		
JP2-JP3	ADDR SEL	Left	I2C Address Selection		
			0/1: Left position 0,		
			Right position 1		
SW1	POS 1-2-3	Middle	Step Resolution		
			Setting Switch		
SW1	POS 4	Middle	Mixed Decay Control		

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918

Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

www.mikroe.com

			Switch	
VR1	VREF	-	Current Threshold	
			Trimmer	

Stepper 9 Click electrical specifications

Description	Min	Тур	Max	Unit
Supply Voltage VCC	3.3	-	5	V
External Supply Voltage VM	8.2	24	44	V
Maximum Output Voltage		-	50	V
Maximum Output Current		-	2	Α
Maximum Step Clock Frequency		-	250	kHz

Software Support

We provide a library for the Stepper 9 Click as well as a demo application (example), developed using MIKROE <u>compilers</u>. The demo can run on all the main MIKROE <u>development boards</u>.

Package can be downloaded/installed directly from NECTO Studio Package Manager (recommended), downloaded from our <u>LibStock™</u> or found on <u>Mikroe github account</u>.

Library Description

This library contains API for Stepper 9 Click driver.

Key functions

- stepper9_set_direction This function sets the motor direction by setting the DIR pin logic state.
- stepper9_drive_motor This function drives the motor for the specific number of steps at the selected speed.
- stepper9 set step mode This function sets the step mode resolution settings.

Example Description

This example demonstrates the use of the Stepper 9 Click board[™] by driving the motor in both directions for a desired number of steps.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager (recommended), downloaded from our <u>LibStock™</u> or found on <u>Mikroe github</u> account.

Other Mikroe Libraries used in the example:

- MikroSDK.Board
- MikroSDK.Log
- Click.Stepper9

Additional notes and informations

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918
Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

Depending on the development board you are using, you may need <u>USB UART click</u>, <u>USB UART 2 Click</u> or <u>RS232 Click</u> to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MIKROE compilers.

mikroSDK

This Click board[™] is supported with mikroSDK - MIKROE Software Development Kit, that needs to be downloaded from the LibStock and installed for the compiler you are using to ensure proper operation of mikroSDK compliant Click board[™] demo applications.

For more information about mikroSDK, visit the official page.

Resources

mikroBUS™

mikroSDK

Click board™ Catalog

Click boards™

Downloads

Stepper 9 click example on Libstock

MCP1501 datasheet

TB67S581FNG datasheet

PCA9538A datasheet

Stepper 9 click 2D and 3D files

Stepper 9 click schematic

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

health and safety management system.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by MikroElektronika manufacturer:

Other Similar products are found below:

EVB-EP5348UI BQ25010EVM ISL80019AEVAL1Z ISLUSBI2CKIT1Z ISL8002AEVAL1Z ISL91108IIA-EVZ MAX8556EVKIT

MAX15005AEVKIT+ ISL28022EVKIT1Z STEVAL-ISA008V1 DRI0043 KITPF8100FRDMEVM EVB-EN6337QA

SAMPLEBOXILD8150TOBO1 MAX18066EVKIT# AP62300WU-EVM KITA2GTC387MOTORCTRTOBO1 AEK-MOT-TK200G1

EVLONE65W STEVAL-ILH006V1 STEVAL-IPE008V2 STEVAL-IPP001V2 STEVAL-ISA013V1 STEVAL-ISA067V1 STEVAL-ISQ002V1 TPS2306EVM-001 TPS2330EVM-185 TPS40001EVM-001 SECO-HVDCDC1362-15W-GEVB BTS7030-2EPA

LT8638SJV#WPBF LTC3308AIV#WTRPBF TLT807B0EPV BTS71033-6ESA EV13N91A EASYPIC V8 OVER USB-C EV55W64A

CLICKER 4 FOR STM32F4 EASYMX PRO V7A FOR STM32 CLICKER 4 FOR PIC18F Si8285_86v2-KIT PAC52700EVK1 NCP
NCV51752D2PAK3LGEVB ISL81807EVAL1Z AP33772S-EVB EVALM7HVIGBTPFCINV4TOBO1 903-0300-000 902-0173-000 903-0301-000 ROA1286023/1