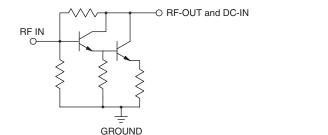
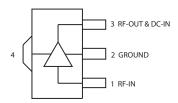
Surface Mount **Monolithic Amplifier**

DC-6 GHz

Product Features

- High gain, 25.6 dB typ. at 100 MHz
- High IP3, 38 dBm typ.
- High Pout, P1dB 21.9 dBm typ.
- Internally Matched to 50 Ohms
- Transient Protected
- Excellent ESD Protection
- Unconditionally stable
- Aqueous washable
- Protected by US Patent 6,943,629
- Low additive phase noise, typically -172 dBc/Hz @10 KHz


Typical Applications


- Base station infrastructure
- Portable Wireless
- CATV & DBS
- MMDS & Wireless LAN
- Suitable for low phase noise applications

General Description

Gali-84+ (RoHS compliant) is a wideband amplifier offering high dynamic range. Lead finish is SnAgNi. It has repeatable performance from lot to lot, and is enclosed in a SOT-89 package. It uses patented Transient Protected Darlington configuration and is fabricated using InGaP HBT technology. Expected MTTF is 1200 years at 85°C case temperature. Gali=84+ is designed to be rugged for ESD and supply switch-on transients.

simplified schematic and pin description

Function	Pin Number	Description	
RF IN	RF IN 1 RF input pin. This pin requires the use of an external DC blockin for the frequency of operation.		
RF-OUT and DC-IN 3		RF output and bias pin. DC voltage is present on this pin; therefore a DC blocking capacitor is necessary for proper operation. An RF choke is needed to feed DC bias without loss of RF signal due to the bias connection, as shown in "Recommended Application Circuit".	
GND	2,4	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.	

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Nini-Circuit's applicable established test performance criteria and measurement instructions. G. The parts covered by this specification document are subject to Mini-Circuit shandard limited warranty and terms and conditions (collectively, "Standard Terms"), Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

REV. C ECO-005768 ED-11756/3E GALI-84+ 210202 Page 1 of 4

Gali - 84+

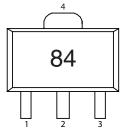
Electrical Specifications at 25°C and 100mA, unless noted

Parameter		Min.	Тур.	Max.	Units	Cpk
Frequency Range*		DC		6	GHz	
Gain	f=0.1 GHz	24.3	25.6	26.9	dB	≥1.5
Guin	f=1 GHz	_	22.7	_		_
	f=2 GHz	18.2	19.2	20.2		
	f=3 GHz	_	16.7	_		
	f=4 GHz	14.3	15.0	15.8		
	f=6 GHz	_	11.8	_		
Magnitude of Gain Variation versus Temperature	f=0.1 GHz		0.0025	_	dB/°C	
(values are negative)	f=1 GHz	—	0.0036	_		
	f=2 GHz	—	0.0045	0.0090		
	f=3 GHz	_	0.0057	_		
	f=4 GHz	_	0.0074	_		
	f=6 GHz	_	0.0148			
Input Return Loss	f=0.1 GHz	_	25.8	_	dB	
	f=1 GHz	_	21.2	_		
	f=2 GHz	14.0	18.0	_		
	f=3 GHz	_	15.6	-		
	f=4 GHz	_	14.7	_		
	f=6 GHz	_	16.7			
Output Return Loss	f=0.1 GHz	_	16.3	-	dB	
	f=1 GHz	_	11.0	_		
	f=2 GHz	6.0	8.9	_		
	f=3 GHz	_	9.0	_		
	f=4 GHz	_	9.7			
	f=6 GHz	_	8.4	_		
Reverse Isolation	f=2 GHz	22	26.5	_	dB	
Output Power @1 dB compression	f=0.1 GHz	20.8	21.9	_	dBm	<u>≥</u> 1.5
	f=1 GHz	20.4	21.5	_		
	f=2 GHz	20.1	21.2	_		
	f=3 GHz	—	20.9	_		
	f=4 GHz	—	19.2	_		
	f=6 GHz	—	15.5	_		
Saturated Output Power	f=0.1 GHz		23.0		dBm	
(at 3dB compression)	f=1 GHz		22.6			
	f=2 GHz		22.1			
	f=3 GHz		21.7			
	f=4 GHz		20.3			
	f=6 GHz		17.1			
Output IP3	f=0.1 GHz	33.8	37.6	_	dBm	≥1.5
	f=1 GHz	34.0	37.8	_		
	f=2 GHz	34.2	38.0	_		
	f=3 GHz	_	37.4			
	f=4 GHz	_	34.7	_		
	f=6 GHz		32.7			
Noise Figure	f=0.1 GHz		4.2		dBm	≥1.5
	f=1 GHz		4.4			
	f=2 GHz		4.4			
	f=3 GHz		4.4			
	f=4 GHz		4.6			
	f=6 GHz		5.3			
Additive Phase Noise	2 GHz, 10 KHz offset		-172		dBc/Hz	
Group Delay	f=2 GHz		94		psec	
Recommended Device Operating Current			100		mA	
Device Operating Voltage		5.4	5.8	6.2	V	≥1.5
Device Voltage Variation vs. Temperature at 100mA			-3.6		mV/°C	
Device Voltage Variation vs Current at 25°C			3.3		mV/mA	

*Guaranteed specification DC-6 GHz. Low frequency cut off determined by external coupling capacitors.

Absolute Maximum Ratings

Parameter	Ratings	
Operating Temperature*	-45°C to 85°C	
Storage Temperature	-65°C to 150°C	
Operating Current	160mA	No
Power Dissipation	1W	The 1Ca
Input Power	13 dBm	*Ba


ermanent damage may occur if any of these limits are exceeded. atings are not intended for continuous normal operation. defined as ground leads. on typical case temperature rise 9°C above ambient.

Notes
A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Min-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuit's standard Terms'; Purchasers of this part are entitled to the rights and measurement instructions. Contained therein. For a full statement of the Standard Terms and conditions (collectively, "Standard Terms'); Purchasers of this part are entitled to the rights and measurement instructions.
C. The parts covered by this specification document are built of the Standard Terms and conditions (collectively, "Standard Terms'); Purchasers of this part are entitled to the rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.sp

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

Product Marking

Markings in addition to model number designation may appear for internal quality control purposes.

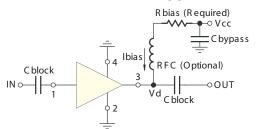
Additional Detailed Technical Information

Additional information is available on our web site. To access this information enter the model number on our web site home page.

Performance data, graphs, s-parameter data set (.zip file)

Case Style: DF782

Plastic package, exposed paddle, lead finish: Matte-Tin


Tape & Reel: F55 7" reels with 20, 50, 100, 200, 500, 1K devices.

Suggested Layout for PCB Design: PL-019

Evaluation Board: TB-409-84+

Environmental Ratings: ENV08T2

Recommended Application Circuit

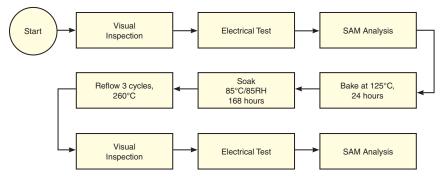
Test Board includes case, connectors, and components (in bold) soldered to PCB

R BIAS				
Vcc	"1%" Res. Values (ohms) for Optimum Biasing			
8	22.1			
9	32.4			
10	42.2			
11	52.3			
12	61.9			
13	71.5			
14	82.5			
15	93.1			
16	102			
17	113			
18	121			
19	133			
20	140			

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are entitled to be excluded and benefits contained in the specification are entitled to be excluded and benefits contained in the specification document are not the specification and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuits trandard limited warranty and terms and conditions (collectivity, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

ESD Rating

Human Body Model (HBM): Class 1C (1000v to < 2000v) in accordance with ANSI/ESD STM 5.1 - 2001


Machine Model (MM): Class M2 (< 100v) in accordance with ANSI/ESD STM 5.2 - 1999

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDECJ-STD-020C

No.	Test Required	Condition	Standard	Quantity
1	Visual Inspection	Low Power Microscope Magnification 40x	MIP-IN-0003 (MCT spec)	45 units
2	Electrical Test	Room Temperature	SCD (MCL spec)	45 units
3	SAM Analysis	Less than 10% growth in term of delamination	J-Std-020C (Jedec Standard)	45 units
4	Moisture Sensitivity Level 1	Bake at 125°C for 24 hours Soak at 85°C/85%RH for 168 hours Reflow 3 cycles at 260°C peak	J-Std-020C (Jedec Standard)	45 units

MSL Test Flow Chart

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and beefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Mini-Circuits manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MACS-007802-0M1RS0 MAAMSS0041TR MAAM37000-A1G CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310